
Automatic Data Filtering for In Situ Work�ows

Clément Mommessin (ANL), Matthieu Dreher (ANL),
Tom Peterka (ANL), Bruno Ra�n (INRIA)

June, 16th, 2017

Scienti�c Work�ow Example: Molecular Dynamics

Gromacs

Atom
Density Velocity

Histogram

Force
Density

2/23

De�nitions

- An in situ work�ow is a directed
graph.

- Nodes are parallel tasks, sending
and receiving data from other
nodes.

- An arc (or data�ow) is a
communication channel between a
producer node and a consumer
node.

- A data model is a structure
containing data �elds

- A message is a serialization of a
data model

3/23

Data Exchange Management

⇒ Typically two solutions

4/23

Data Exchange Management: Broadcast Everything

X No code modi�cation

X Extra cost to create and send the data

X Unnecessary data on the network

5/23

Data Exchange Management: Speci�c per Consumer

X Send only what is necessary

X Code modi�cation for every work�ow

6/23

Solution Proposed: Automatic Data Filtering

Contract mechanism: a description of the inputs and outputs of
each node for automatic message checking and �ltering at runtime.

Our objectives:

I Send only necessary data over the network

I Select data to compose a message automatically

I Improve reusability of the user code

I Enable type checking of data

7/23

Contract Model

A contract is a list of data �elds present in a data model and can
describe:

- The data output by a producer

- The data needed by a consumer

Each data �eld is represented by a triplet:

I Name: The name of the �eld

I Type: The type of the �eld

I Periodicity: The frequency at which the �eld appears in the
data model

8/23

Contracts Checking

A matching list describes the minimal list of data �elds a producer
has to send to a consumer and is computed as follows:

1. Check that all �elds required by the consumer are in the
producer contract, with the same name and type

2. Add these �elds to the matching list with the correct
periodicities

9/23

Message Filtering at Runtime

Matching lists are used for automatic type checking and
selection of data by a middleware at runtime:

1. Take the full data model output by the producer

2. Compare the actual data types with the matching list

3. Form a data model containing only the required data using the
matching list

4. Send the new data model to the consumer

10/23

Data Exchange Management: Use Contracts

X Send only what is necessary

X No code modi�cation

11/23

Integration of Contracts Within Decaf

Decaf is a middleware for building and executing in situ work�ows
where:

I Nodes are parallel tasks

I Edges are parallel communications between nodes

Launching a work�ow is done in 2 steps:

I Declaration of nodes and edges to construct the work�ow
graph with a Python API

I Task execution and management with a runtime system,
providing put/get methods to exchange data between nodes

12/23

Modi�cations of Decaf

Modi�cations of the Python API:

I Creation of contracts for input and output when declaring
nodes

I Checking that producer and consumer contracts are matching:

- Type checking
- Computation of matching lists

Modi�cations of the runtime, at each call to put:

I Type checking of the data using the matching list

I Automatic data selection of �elds in the matching list

⇒ Transparent to the user

13/23

Performance Evaluation

Evaluation of the cost and performance of message �ltering with 2
experiments:

I Overhead of message �ltering when contracts are not needed

I Performance impact on a real scienti�c work�ow

Experiments conducted on the Froggy cluster
(https://ciment.ujf-grenoble.fr), 190 nodes, 16 cores per node,
FDR In�niBand network of 60 Gbit/s.

14/23

Message Filtering Overhead

What is the cost of �ltering messages when not needed?

I Hand-made example of one producer and one consumer

I Identical producer and consumer contracts

I Variable number and size of �elds sent, variable number of
processes per node

I Measurement of time spent in put and in the �ltering function
for 1000 messages sent

15/23

Message Filtering Overhead: Results

●
●

●
●

● ● ●
● ●

● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●

●

●
●

●

● ● ● ●

●

● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●

●

●
●

●

● ● ● ●

●

● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●

1 5 10

40kB
4M

B
40M

B

1 2 4 8 16 32 64 128256 1 2 4 8 16 32 64 128256 1 2 4 8 16 32 64 128256

0

2

4

6

8

0

2

4

6

8

0

2

4

6

8

Number of processes

Pe
rc

en
ta

ge
 o

f t
im

e
in

 fi
lte

rM
es

sa
ge

 o
ve

r p
ut

 ti
m

e
(%

)
Up to 8.3%

Less than 0.02%

⇒ Virtually no cost when size of a message is a few MB

16/23

Performance on Real Work�ow: Setting

17/23

Real Scienti�c Work�ow: Setting (cont.)

I Performance impact with 3 �ltering methods:
I Automatic �ltering with contracts in Decaf (auto)
I Manual �ltering at the producer level (manual)
I No �ltering of message (none)

I Simulation data output every 10 or 100 iterations

I Measurement of time spent in simulation and in put for
200,000 iterations

I Molecular model of the FepA protein (about 70,000 atoms)

I Up to 224 cores for the simulation (maximum scalability), 4
cores for each analysis

18/23

Performance on Real Work�ow: Results

10 100

28 56 112 224 28 56 112 224

0

3

6

9

Number of Gromacs processes

Pe
rc

en
ta

ge
 o

f t
im

e
in

 p
ut

 o
ve

r s
im

ul
at

io
n

tim
e

(%
)

auto
manual
none

5.75x

0.92x

1.75x

Frequency
of output

Less data to serialize and send ⇒ less time spent in put

19/23

Performance on Real Work�ow: Results (cont.)

10 100

28 56 112 224 28 56 112 224

0

100

200

300

400

Number of Gromacs processes

G
ro

m
ac

s
sp

ee
d

(i
t/s

)

auto
manual
none

2%

63%

6%

Frequency

of output

⇒ Frequency gain more signi�cant because less contention in network

20/23

Conclusion

I Design of a contract model to describe producer data outputs
and consumer data requirements

I Automatic type checking and data �ltering of message by a
middleware

I Integration into the Decaf middleware

I Removes the I/O management from the user code

I Improves reusability of user code in di�erent work�ows

I No unnecessary data in communication channels

21/23

Future Work
I Integrate contracts mechanism in FlowVR and EVPath.

I Declaration of contracts at runtime

Work submitted to 2017 IEEE Cluster
Source code available at: https://bitbucket.org/tpeterka1/decaf

References
I Decaf: Decoupled data�ows for in situ high-performance

work�ows, Submitted to 2017 IEEE Cluster, Sept. 2017.

I Bredala: Semantic data redistribution for in situ applications,
2016 IEEE Cluster, Sept. 2016.

22/23

Thank you for your attention!

Any question?

23/23

Periodicity Example

1/6

Middle Contract Example

Two matching lists are computed:

I listprod between the producer contract and the middle input
contract

I listmiddle between the middle output contract and the
consumer contract

2/6

Middle Contract Example

Two matching lists are computed:

I listprod between the producer contract and the middle input
contract

I listmiddle between the middle output contract and the
consumer contract

2/6

Python Example

#Node d e c l a r a t i o n
p roduce r = Node (' p roduce r ' , s t a r t =0, np roc s=4, cmd l ine=' program ')
p roduce r . addOutputFromDict ({ ' dataA ' : [' i n t ' , 1] ,

' dataB ' : [' f l o a t ' , 1] })

consumer = Node (' consumer ' , s t a r t =6, np roc s=2, cmd l i ne=' program ')
consumer . addInputFromDict ({ ' dataA ' : [' i n t ' , 2] ,

' dataB ' : [' i n t ' , 1] })

#Edge d e c l a r a t i o n
edge = Edge (' p roduce r ' , ' consumer ' , s t a r t =4, np roc s=2, func=' l i n k ' ,

path=l ink_path , p rod_df low_red i s t=' count ' ,
d f l ow_con_red i s t=' count ' , cmd l i ne=' program ')

edge . add Input (' dataB ' , ' f l o a t ' , 1)
edge . addOutput (' dataB ' , ' i n t ' , 1)
edge . s e t F o rwa r dF i e l d (True)

#Popu l a t i ng and p r o c e s s i n g the graph
graph = DiGraph ()
graph . addNodes ([p roducer , consumer])
graph . addEdge (edge)

p roce s sGraph (graph , ' program ')

3/6

Algorithm 1: Computing a Matching List

Input: A producer and a consumer contracts (prod -contract and
cons-contract).

matching = /0
forall (name, type, cons-period) ∈ cons-contract do

if ∃ (name, type, prod-period) ∈ prod-contract then
periodicity = cons-period ×prod -period
matching =matching ∪{(name, type,periodicity)}

else
print "ERROR: data �eld mismatch"

end

end
return matching

4/6

Algorithm 2: Data Filtering at Runtime
Input: The original data, the matching list and the current iteration

�ltered_data = Empty message
forall (name, type_contract, periodicity) in list do

if iteration % periodicity == 0 then
if name /∈ data then

ERROR: "�eld not in data"
end
�eld ← getData(data,name)
type_�eld ← getType(�eld)
if type_contract 6= type_�eld then

ERROR: "types do not match"
else

Add �eld in �ltered_data

end

end

end
return �ltered_data

5/6

Runtime Example

// r e t r i e v e message from i npu t
pConst ructData in_data ;
whi le (deca f−>get (in_data , " I n "))
{

// r e t r i e v e the v a l u e r e c i e v e d
i n t v a l u e = 0 ;
S im p l e F i e l d i f i e l d = in_data−>getF i e l dData<S imp l e F i e l d i >(" va r ") ;
v a l u e = f i e l d . getData () ;

// c r e a t e a f i e l d w i th the new va l u e
// and add i t to a new data model
S imp l e F i e l d i new_f i e ld (v a l u e + 1) ;
pConst ructData out_data ;
out_data−>appendData ("new_var" , new_f ie ld ,

DECAF_NOFLAG, DECAF_PRIVATE,
DECAF_SPLIT_KEEP_VALUE,
DECAF_MERGE_ADD_VALUE) ;

// send the data model c o n t a i n i n g the new va l u e
decaf−>put (out_data , "Out") ;

}

6/6

	Appendix

