Argonne°

NATIONAL LAB! ORATORY

Automatic Data Filtering for In Situ Workflows

Clément Mommessin (ANL), Matthieu Dreher (ANL),
Tom Peterka (ANL), Bruno Raffin (INRIA)

June, 16th, 2017

(& ENERGY




Scientific Workflow Example: Molecular Dynamics

Gromacs ——

N

Atom
Density

Y
Velocity

Force
Density

Histogram

2/23



Definitions

- An in situ workflow is a directed

O
- Nodes are parallel tasks, sending G

and receiving data from other

nodes. G
- An arc (or dataflow) is a

communication channel between a

producer node and a consumer

node.

- A data model is a structure

containing data fields - int atomID[]

- float position[]
- float velocityl]

- A message is a serialization of a
data model

a 3/23



Data Exchange Management

. Atom ID :

Gromacs | | Wi |

Force

connections?

\

Atom Velocity Force
Density Histogram Density
| Atom ID " Velocity | " Atom D |
i Position ! LI : ' Position !
L —— ! . Force

= Typically two solutions

a 4/23



Data Exchange Management: Broadcast Everythin

Gromacs

- Atom ID

- Position

- Velocity

- Force

Y
Atom Velocity
Density Histogram
ey o

Position Velocity

_____________

No code modification
X Extra cost to create and send the data
X Unnecessary data on the network

N

i Atom ID :

Position
Velocity
Force

Force
Density

Atom ID |

Position
Force

5/23



\  Atom ID

Gromacs | | Vs

Force

- Atom ID - Atom ID
- Position - Velocity - Position
- Force
Y
Atom Velocity Force
Density Histogram Density
; Atom 1D Velocity | ; Atom ID
Position L S : . Position
Tessmioiioin . Force

Send only what is necessary
X Code modification for every workflow

a 6/23



Solution Proposed: Automatic Data Filtering

Contract mechanism: a description of the inputs and outputs of

each node for automatic message checking and filtering at runtime.

Producer

atom ID, integer, 1
position, float*3, 1
velocity, float*3, 1

Our objectives:

>

v

v

v

Y

Consumer

atom ID, integer, 1
velocity, float*3, 10

Send only necessary data over the network

Select data to compose a message automatically

Improve reusability of the user code
Enable type checking of data

7/23



Contract Model

A contract is a list of data fields present in a data model and can
describe:

- The data output by a producer
- The data needed by a consumer

Each data field is represented by a triplet:
» Name: The name of the field
» Type: The type of the field

» Periodicity: The frequency at which the field appears in the
data model

- atom ID, integer, 1
- velocity, float*3, 10

a 8/23



Contracts Checking

A matching list describes the minimal list of data fields a producer
has to send to a consumer and is computed as follows:

1. Check that all fields required by the consumer are in the
producer contract, with the same name and type

2. Add these fields to the matching list with the correct
periodicities

Consumer

atom ID, integer, 1
velocity, float*3, 10

Producer
atom ID, integer, 1
position, float*3, 1
velocity, float*3, 1

7 \
. atom ID, integer, 1 !
' velocity, float*3, 10

/

I
N

a 9/23



Message Filtering at Runtime

Matching lists are used for automatic type checking and
selection of data by a middleware at runtime:

1. Take the full data model output by the producer

2. Compare the actual data types with the matching list

3. Form a data model containing only the required data using the
matching list

4. Send the new data model to the consumer

10/23



Data Exchange Management: Use Contracts

- Atom ID
- Position

Atom
Density

\ Atom ID !
Position

Gromacs

- Atom ID
- Position
- Force

- Velocity

Y
Velocity
Histogram

Send only what is necessary

No code modification

i Atom ID :

Position
Velocity
Force

Force
Density

Atom ID .
Position
Force

11/23



Integration of Contracts Within Decaf

Decaf is a middleware for building and executing in situ workflows
where:

» Nodes are parallel tasks
» Edges are parallel communications between nodes

Launching a workflow is done in 2 steps:

» Declaration of nodes and edges to construct the workflow
graph with a Python API

» Task execution and management with a runtime system,
providing put/get methods to exchange data between nodes

a 12/23



Modifications of Decaf

Modifications of the Python API:

» Creation of contracts for input and output when declaring
nodes

» Checking that producer and consumer contracts are matching:

- Type checking
- Computation of matching lists

Modifications of the runtime, at each call to put:
» Type checking of the data using the matching list

» Automatic data selection of fields in the matching list

= Transparent to the user

13/23



Performance Evaluation

Evaluation of the cost and performance of message filtering with 2
experiments:

» Overhead of message filtering when contracts are not needed

» Performance impact on a real scientific workflow

Experiments conducted on the Froggy cluster
(https://ciment.ujf-grenoble.fr), 190 nodes, 16 cores per node,
FDR InfiniBand network of 60 Gbit/s.

a 14/23



Message Filtering Overhead

What is the cost of filtering messages when not needed?

» Hand-made example of one producer and one consumer
» lIdentical producer and consumer contracts

» Variable number and size of fields sent, variable number of
processes per node

Producer

» Measurement of time spent in put and in the filtering function
for 1000 messages sent

a 15/23



Message Filtering Overhead: Results

1 5 10
o S
) Up to 8.3%
oé)é— \\\_%_\
Py

E i ‘\_'_\‘_. %
=
Q.
-
[
3o
G
<
w2
@ 6~
s IS
5" 3
=
o2
k=
o 0"
S
=]
S
O 6-
() B
2. 2
1=} @
8 2-
;E <«—— Less than 0.02%

o-

12 4 8163264128256 1 2 4 8 163264128256 1 2 4 8 16 32 64128256
Number of processes

= Virtually no cost when size of a message is a few MB

16/23



Performance on Real Workflow: Setting

Gromacs  Conta
-id - velocity 4 Matching list
- position - force /
""" o T
e LN e
Link T Link
velocity
ey Y T T
position | H force
morton ! Y ! morton
 domainBlock; . 1 domainBlockE
Meeeeeemeennes / Velocity S :
Histogram
Atom Force
Density Density

a 17/23



Real Scientific Workflow: Setting (cont.)

» Performance impact with 3 filtering methods:

» Automatic filtering with contracts in Decaf (auto)
» Manual filtering at the producer level (manual)
» No filtering of message (none)

» Simulation data output every 10 or 100 iterations

» Measurement of time spent in simulation and in put for
200,000 iterations

» Molecular model of the FepA protein (about 70,000 atoms)

» Up to 224 cores for the simulation (maximum scalability), 4
cores for each analysis

a 18/23



Performance on Real Workflow: Results

10 10 «—— Frequency
of output
S
2
= 9- 1.75x
=
g
s
=
£
Z
3 0.92x
z 6 M auto
5 manual
& M none
g
Q
£
B 3
[}
)
8
|
[}
n% I I I 5.75x
56 112 224 56 112 224

Number of Gromacs processes

Less data to serialize and send = less time spent in put

a 19/23



Performance on Real Workflow: Results (cont.)

10 100 «— Frequency
400- of output
2% 6%

63%
300-
] M auto
200 manual
HMnone
107 | | | I
O . I

28 56 112 224 28 56 1i2 224
Number of Gromacs processes

Gromacs speed (it/s)

S

= Frequency gain more significant because less contention in network

a 20/23



Conclusion

» Design of a contract model to describe producer data outputs
and consumer data requirements

» Automatic type checking and data filtering of message by a
middleware

» Integration into the Decaf middleware

» Removes the I/O management from the user code
» Improves reusability of user code in different workflows

» No unnecessary data in communication channels

a 21/23



Future Work

> Integrate contracts mechanism in FlowVR and EVPath.

» Declaration of contracts at runtime

Work submitted to 2017 IEEE Cluster
Source code available at: https://bitbucket.org/tpeterkal/decaf

References

» Decaf: Decoupled dataflows for in situ high-performance
workflows, Submitted to 2017 IEEE Cluster, Sept. 2017.

» Bredala: Semantic data redistribution for in situ applications,
2016 IEEE Cluster, Sept. 2016.

22/23



Thank you for your attention!

Any question?

23/23






Periodicity Example

Consumer

atom ID, integer, 1
velocity, float*3, 5

Producer
atom ID, integer, 1
position, float*3, 1
velocity, float*3, 2

7 \
\ atom ID, integer, 1

. I
! velocity, float*3, 10
N /

a 1/6



Middle Contract Example

Two matching lists are computed:
> listpod between the producer contract and the middle input
contract
> listniddle between the middle output contract and the
consumer contract

Producer : Link — Consumer
forward-fields =True )
dataA, integer, 1 : : dataA, integer, 2
dataB, float, 1 : dataB, float, 1 | dataB, integer, 1 : dataB, integer, 1
.......... Yo R AU
Jistorog istmigare
idataB, float, 1 idataB, integer, 1

a 2/6



Middle Contract Example

Two matching lists are computed:

> listpod between the producer contract and the middle input
contract

> listniddle between the middle output contract and the
consumer contract

Producer ; Link — Consumer
forward-fields =True )
dataA, integer, 1 : : dataA, integer, 2
dataB, float, 1 : dataB, float, 1 | dataB, integer, 1 : dataB, integer, 1
.......... Yo
ity
dataA integer, 2 dataA integer, 2
.dataB float, 1 | .dataB integer, 1.

a 2/6



Python Example

#Node declaration
producer = Node( 'producer’, start=0, nprocs=4, cmdline="program’)
producer.addOutputFromDict({ dataA’:[ "int’', 1],

"dataB ' :[ "float ', 1]})

consumer = Node( 'consumer’, start=6, nprocs=2, cmdline="program’)
consumer.addInputFromDict({ dataA’:[ "int"', 2],
"dataB ' :["int ', 1]})

#Edge declaration

edge = Edge('producer’, 'consumer’', start=4, nprocs=2, func="link’
path=link path, prod_ dflow redist="count’,
dflow con_ redist="count’, cmdline="program’)
edge.addlnput(’'dataB’', 'float’, 1)
edge.addOutput( 'dataB’', "int’', 1)

edge.setForwardField (True)
#Populating and processing the graph
graph = DiGraph ()

graph .addNodes ([ producer, consumer])
graph.addEdge (edge)

processGraph (graph, 'program’)

3/6



Algorithm 1: Computing a Matching List

Input: A producer and a consumer contracts (prod-contract and
cons-contract).

matching = 0

forall (name, type, cons-period) € cons-contract do

if 3 (name, type, prod-period) € prod-contract then
periodicity = cons-period x prod-period
matching = matching U{(name, type, periodicity)}

else

| print "ERROR: data field mismatch"

end

end

return matching

a 476



Algorithm 2: Data Filtering at Runtime

Input: The original data, the matching list and the current iteration

filtered data = Empty message
forall (name, type contract, periodicity) in list do
if iteration % periodicity == 0 then
if name ¢ data then
| ERROR: "field not in data"
end
field < getData(data,name)
type field < getType(field)
if type contract # type field then
| ERROR: "types do not match"
else
| Add field in filtered _data
end
end

end
return filtered data
S 5/6




Runtime Example

// retrieve message from input
pConstructData in_data;
while (decaf—>get(in_data, "In"))
{
// retrieve the value recieved
int value = 0;
SimpleFieldi field = in_data—>getFieldData<SimpleFieldi >("var");
value = field .getData ();

// create a field with the new value

// and add it to a new data model

SimpleFieldi new field(value + 1);

pConstructData out data;

out data—>appendData("new var", new field,
DECAF_NOFLAG, DECAF_PRIVATE,
DECAF_SPLIT KEEP VALUE,
DECAF_MERGE_ADD VALUE);

// send the data model containing the new value
decaf—>put(out_data, "Out");

S 6/6



	Appendix

