
Scheduling Parallel Programs on Hybrid Machines

Mommessin Clément
Univ. Grenoble Alpes

Research project performed at INRIA-Grenoble

Under the supervision of:
Prof. D. Trystram, Grenoble INP
Dr. G. Lucarelli, Grenoble INP

June, 24th, 2016

1/34



High Performance Computing

Evolution of parallel platforms
Increasing number of nodes
Heterogeneity within the nodes (CPU, accelerator (GPU), I/O,
analytics, ...)

⇒ Hard to efficiently manage this increasing number of resource
types.

Ad-hoc algorithms vs. Generic algorithms

2/34



High Performance Computing

Evolution of parallel platforms
Increasing number of nodes
Heterogeneity within the nodes (CPU, accelerator (GPU), I/O,
analytics, ...)

⇒ Hard to efficiently manage this increasing number of resource
types.

Ad-hoc algorithms vs. Generic algorithms

2/34



Problem Definition

m identical CPUs
k identical GPUs
n dependent tasks Tj

pj : processing time on CPU
pj : processing time on GPU

DAG G = (V ,E ) :
precedence constraints

3/34



Problem Definition (cont.)

Goal

Minimize the makespan, completion time of the last task, for
scheduling a set of dependent tasks to be executed on several
identical CPUs and GPUs.
Specifically, scheduling a task is answering two questions:

Where? – On which resource and which processor the task is
executed
When? – The date of execution of the task

4/34



Example with List Scheduling

Task Processing time on CPU / GPU
T1 2 / 1
T2 10 / 1
T3 1 / 1 T3

T2T1

CPU

GPU

0

T1

1

T2

10

T3

11 0

T2T1 T3

3
Classical List Scheduling Optimal

5/34



Example with List Scheduling

Task Processing time on CPU / GPU
T1 2 / 1
T2 10 / 1
T3 1 / 1 T3

T2T1

CPU

GPU

0

T1

1

T2

10

T3

11 0

T2T1 T3

3
Classical List Scheduling Optimal

5/34



Example with List Scheduling

Task Processing time on CPU / GPU
T1 2 / 1
T2 10 / 1
T3 1 / 1 T3

T2T1

CPU

GPU

0

T1

1

T2

10

T3

11 0

T2T1 T3

3
Classical List Scheduling Optimal

5/34



Example with List Scheduling

Task Processing time on CPU / GPU
T1 2 / 1
T2 10 / 1
T3 1 / 1 T3

T2T1

CPU

GPU

0

T1

1

T2

10

T3

11

0

T2T1 T3

3
Classical List Scheduling Optimal

5/34



Example with List Scheduling

Task Processing time on CPU / GPU
T1 2 / 1
T2 10 / 1
T3 1 / 1 T3

T2T1

CPU

GPU

0

T1

1

T2

10

T3

11 0

T2T1 T3

3
Classical List Scheduling Optimal

5/34



State of art

Heuristics
Offline with dependent tasks and communications [Topcuoglu
et al., 1999]

Approximation algorithms
Offline with independent tasks [Bleuse et al., 2014]
Online with independent tasks [Chen et al., 2014]

Offline with dependent tasks [Kedad-Sidhoum et al., 2015]

6/34



Plan

Heterogeneous Earliest Finish Time (HEFT)
Heterogeneous Linear Program (HLP)
New Algorithm (refined HLP)
Experiments
Conclusions and perspectives

7/34



HEFT [Topcuoglu et al., 1999]

Works in two steps:
1 Task prioritization
2 Task scheduling

But no constant performance guarantee on the makespan
Counter-example with approximation ratio close to m

2 [Bleuse
et al., 2015]
Improved counter-example with approximation ratio close to
(1− 1

e )m [This work]

8/34



HEFT [Topcuoglu et al., 1999] (cont.)

Task prioritization: For the model of hybrid machines, the rank of
each task Tj is recursively computed as follows:

rank(Tj) =
mpj +kpj

m +k
+ max

i∈Γ+(j)
{rank(Ti )}

Task scheduling: Schedules the task with the highest rank on the
processor which minimizes the completion time of that task.

9/34



HLP [Kedad-Sidhoum et al., 2015]

Works in two steps:
1 Assignment step: A linear program and a rounding method are

used to assign each task to a resource type
2 Scheduling step: A variant of List Scheduling schedules each

task according to the assignment of the first step

The approximation ratio is 6 [Kedad-Sidhoum et al., 2015]
The bound on the approximation ratio is tight [This work]

10/34



Assignment step

Variables used:

xj : Binary assignment variable of Tj defined as:

xj =

{
1 if Tj is processed on a CPU
0 otherwise

Cj : Expected completion time of Tj

λ : Lower bound of the makespan

11/34



Assignment step (cont.)

(ILP1) = minimize λ subject to:

Ci +pjxj +pj(1− xj)≤ Cj ∀j ∈ V , ∀i ∈ Γ−(j)

Cj ≤ λ ∀j ∈ V
n

∑
j=1

pjxj ≤mλ

n

∑
j=1

pj(1− xj)≤ kλ

xj ∈ {0,1} ∀j ∈ V

12/34



Assignment step (cont.)

(LP1) = minimize λ subject to:

Ci +pjxj +pj(1− xj)≤ Cj ∀j ∈ V , ∀i ∈ Γ−(j)

Cj ≤ λ ∀j ∈ V
n

∑
j=1

pjxj ≤mλ

n

∑
j=1

pj(1− xj)≤ kλ

xj ∈ [0,1] ∀j ∈ V

13/34



Rounding Policy

Rounding of each variable xj :

xj =

{
1 if xR

j ≥
1
2

0 otherwise

The goal of the rounding is to evenly balance the load between the
CPUs and the GPUs.

14/34



Scheduling step

Algorithm 1
1: S ← /0
2: while S 6= T do
3: R ←{Tj | Γ−(j)⊆ S} : the set of ready tasks
4: Tj ∈ R : the task with the smallest possible starting time,

with respect to the precedence constraints and the assignment
variables

5: Schedule Tj on the processor which gives the smallest possible
starting time

6: S ← S ∪{Tj}

15/34



Worst-case Example

GPUs

E

B
C

CPUs
A

J

D

0 2m 4m−2 6m−3

16/34



Worst-case Example

GPUs

E

B
C

CPUs
A

J

D

0 2m 4m−2 6m−3

16/34



New Scheduling Method

A recursive ranking method of each task is defined:

Rank(Tj) = pjxj +pj(1− xj) + max
i∈Γ+(j)

{Rank(Ti )}

The list of tasks is sorted in decreasing order of the ranks to give
priority to the critical tasks.

17/34



New Linear Program

(ILP2) = minimize λ subject to:

Ci +pjxj +pj(1− xj)≤ Cj ∀j ∈ V , ∀i ∈ Γ−(j)

Cj ≤ λ ∀j ∈ V

∑
i∈A(j)

pixi

m
+pjxj +pj(1− xj)≤ Cj ∀j ∈ V

∑
i∈A(j)

pi (1− xi )

k
+pjxj +pj(1− xj)≤ Cj ∀j ∈ V

xj ∈ {0,1} ∀j ∈ V

18/34



New Algorithm

The refined algorithm is defined with:
(LP2)

Original rounding method
List Scheduling with ranking of tasks

Proposition

The new algorithm has an approximation ratio of 6 and the bound
is tight.

19/34



Worst-case Example

0
6m−3

12m−6
(l +2)m

6lm−3l

GPU

A

J2 J4 Jl−1· · ·

CPU J1 J3 Jl· · ·

20/34



Experiments

Benchmark constructed from Chameleon:
6 applications of linear algebra for dense matrix
4 tilings of the matrices in sub-matrices
6 size of sub-matrices

⇒ total of 24 configurations of each application.

Different couples (nb_cpu, nb_gpu) to simulate the hybrid
machines.

Different algorithms tested:
HLP, refined HLP and HLP_ranked
HEFT as a reference
Greedy algorithm without LP

21/34



Analysis of HLP

1.0

1.1

1.2

1.3

10 20 50
Nb_bloc

R
at

io

Application

sgetrf_nopiv

sgetrs_nopiv

sposv

spotrf

spotri

spotrs

22/34



Analysis of HLP (cont.)

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●
●
●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●
●

●

●

0.00

0.05

0.10

0.15

sgetrf_nopiv sgetrs_nopiv sposv spotrf spotri spotrs
app

pe
rc

en
t

Total number of tasks
for nb_bloc=50

●

●

●

●

●

2551

22101

24651

42926

66301

23/34



Comparison of the Algorithms

sgetrf_nopiv

sgetrs_nopiv

sposv

spotrf

spotri

spotrs

0 50 100 150
Makespan

A
pp

lic
at

io
n Algorithms

HLP

HLP_ranked

refined_HLP

24/34



Comparison with HEFT

sgetrf_nopiv

sgetrs_nopiv

sposv

spotrf

spotri

spotrs

0 100 200
Makespan

A
pp

lic
at

io
n Algorithms

HLP_ranked

HEFT

25/34



Algorithm without LP

Decision rule for the assignment:

xj =

{
1 if pj√

m ≤
pj√
k

0 otherwise

List Scheduling with ranking of tasks

26/34



LP versus Greedy

sgetrs_nopiv

sposv

spotrf

spotrs

0 100 200 300 400
Mean makespan

A
pp

lic
at

io
n Algorithms

HLP_ranked

NOLP

27/34



Conclusions and Contributions

Worst-case example for HLP
Bound of approximation ratio tight at 6

Design and analysis of the refined HLP algorithm
Approximation ratio of 6
Tight bound

Generalization of HLP for more heterogeneous platforms
Tight Q(Q +1) approximation analysis

Improved lower bound for HEFT
Approximation ratio at least (1− 1

e )m
Construction of a benchmark

6 applications of dense matrix linear algebra

Performance comparison of the algorithms

28/34



Future Work

Improve the assignment step
More dynamic decision rules
Both for hybrid and heterogeneous
platforms

Consider the increasing complexity of the
platforms

Different accelerators, I/O or
visualization units
New constraints due to this
heterogeneity

⇒ The design of an integrated scheduler for next-generation
computing platforms

29/34



Thank you for your attention

Any question ?

30/34



Void

31/34



sgetrs_nopiv

sposv

spotrf

spotrs

0 1000 2000
Max makespan

A
pp

lic
at

io
n Algorithms

HLP_ranked

NOLP

32/34



(LPQ) = minimize λ = Cend subject to:

Ci +
Q

∑
q=1

pj ,qxj ,q ≤ Cj ∀j ∈ V , ∀i ∈ Γ−(j)

∑
i∈A(j)

pj ,qxj ,q

Mq
+

Q

∑
q=1

pj ,qxj ,q ≤ Cj ∀j ∈ V , ∀q = 1, · · · ,Q

Q

∑
q=1

xj ,q = 1 ∀j ∈ V

xj ,q ∈ {0,1} ∀j ∈ V , ∀q = 1, · · · ,Q

33/34



1 rj = argmax
q=1,··· ,Q

{xR
j ,q} ∀j ∈ V

2 xj ,q =

{
1 if q = rj
0 otherwise

∀j ∈ V , ∀q = 1, · · · ,Q

34/34


