
Master of Science in Informatics at Grenoble
Master Mathématiques Informatique - spécialité Informatique

Option Parallel, Distributed and Embedded Systems

Scheduling Parallel Programs on
Hybrid Machines
Mommessin Clément

June 24, 2016

Research project performed at INRIA-Grenoble

Under the supervision of:
Prof. D. Trystram, Grenoble INP
Dr. G. Lucarelli, Grenoble INP

Defended before a jury composed of:
Prof. N. Depalma, University Grenoble Alpes

Prof. M. Heusse, Grenoble INP
Prof. C. Berrut, University Grenoble Alpes
Prof. O. Gruber, University Grenoble Alpes

Prof. S. Kedad, University Paris 6

June 2016

Abstract

In this paper, we are interested in scheduling an application, i.e., a set of tasks
linked by precedence relations, on an heterogeneous parallel machine composed
of classical processors (CPUs) with accelerators (GPUs). Such architectures are
commonly used in modern high-performance computing platforms. The objective
is to minimize the completion time of the entire application, denoted by makespan.

We focus in this work on the design of generic methods for scheduling any
application, in opposition to most existing dedicated methods developed for spe-
cific structures. First, we analyse the recent approximation algorithm proposed by
Kedad-Sidhoum et al. [10] which achieves a ratio of 6 for solving this problem.
This approach is based on a two-phases method where the first phase is based on
a rounding of the solution provided by a linear programming formulation for de-
termining the assignment of the tasks to the resources. The second phase uses a
classical greedy list algorithm to schedule the tasks according to this assignment.
We first construct an instance which shows that the 6-approximation ratio achieved
by the proposed algorithm is tight.

Then, we introduce some new constraints in the linear program to improve the
assignment step. However, the weakness of the existing algorithm relies mainly
in the policy used in the second phase. Thus, we propose a new rule inspired by
the ranking function of the well-known HEFT algorithm for improving the second
phase. Nevertheless, we show that the approximation ratio is still equal to 6.

We also extend the model for Q ≥ 2 heterogeneous types of computing units.
We generalize the new algorithm defined for Q = 2 and we prove that it achieves a
Q(Q+1)-approximation ratio, which is tight.

An experimental study is reported for studying the practical behavior of the var-
ious methods. For this purpose, we developed a new benchmark based on actual
library components of Chameleon. The set of experiments shows that the perfor-
mance of the linear program-based algorithms are in practice much better than the
theoretical upper bound of 6. Moreover, our modified algorithm outperforms the
original one, while it is, on average, competitive to HEFT.

Résumé

Dans ce papier, nous nous intéressons à l’ordonnancement d’une application,
i.e., un ensemble de tâches liées par des relations de précédence, sur une ma-
chine parallèle et hétérogène composée de processeurs traditionnels (CPUs) et
d’accélérateurs de calculs (GPUs). De telles architectures sont beaucoup employées
dans les plateformes modernes de calculs à haute performance. L’objectif est de
minimiser le temps de complétion de l’application dans son ensemble, noté makes-
pan.

Nous nous concentrons dans ce travail sur la conception de méthodes génériques
pour l’ordonnancement d’une application quelconque, en opposition à la plupart
des méthodes qui sont dédiées à l’ordonnancement de structures spécifiques. Pre-
mièrement, nous analysons le récent algorithme d’approximation proposé par Kedad-
Sidhoum et al. [10] qui atteint un rapport d’approximation de 6 pour la résolution
de ce problème. Cette approche est basée sur une méthode à deux étapes. La
première phase est basée sur l’arrondissement de la solution d’un programme linéaire
pour déterminer l’affectation d’une tache à une ressource. La seconde phase utilise
un algorithme de liste glouton pour ordonnancer les tâches suivant les affectations.
Nous construisons tout d’abord une instance du problème qui montre que le ratio
d’approximation à 6 de l’algorithme est strict.

Ensuite, nous définissons des nouvelles contraintes pour le programme linéaire
pour améliorer l’étape d’affectation. Toutefois, la faiblesse dans l’algorithme exis-
tant vient principalement de la méthode utilisée dans la seconde phase. Ainsi, nous
proposons une nouvelle règle inspirée de la fonction de classement de l’algorithme
HEFT pour améliorer la seconde étape. Néanmoins, nous montrons que le rapport
d’approximation de l’algorithme reste égal à 6.

Nous étendons également le modèle pour Q≥ 2 types hétérogènes d’unités de
calculs. Nous généralisons le nouvel algorithme défini pour Q= 2 et nous prouvons
que l’algorithme généralisé atteint un strict rapport d’approximation de Q(Q+1).

Une étude expérimentale est menée pour étudier le comportement des différentes
méthodes en pratique. Pour cela, nous avons développé un benchmark basé sur les
composants réels de la librairie Chameleon. L’ensemble des expériences montre
que les performances des algorithmes basés sur des programmes linéaires sont en
pratique bien meilleurs que les bornes supérieures théoriques à 6. De plus, notre
algorithme modifié surpasse l’algorithme original et est, en moyenne, comparatif à
HEFT.

ii

Contents

Abstract i

Résumé ii

1 Introduction 1
1.1 Problem Definition . 1
1.2 Main Constributions and Outline . 2

2 Preliminaries 5
2.1 Problem Definition . 5
2.2 Notations and Other Definitions . 6
2.3 An Example . 6

3 State of the art 9
3.1 Identical Platforms . 9
3.2 Unrelated Platforms . 10
3.3 Hybrid Platforms . 10

4 The HEFT Algorithm 13
4.1 The Algorithm . 13
4.2 A Counter-Example of at Least (1− 1

e)m . 14

5 The HLP Algorithm 19
5.1 The Algorithm . 19
5.2 Worst Case Example . 21

6 Modifications on HLP 25
6.1 Modifications of the Linear Program . 25
6.2 Modifications of the Scheduling Method . 26
6.3 Worst Case Example . 27

7 Generalization on Q Resources Types 31
7.1 Linear Program . 31
7.2 Rounding and Scheduling Methods . 32
7.3 Analysis . 33

8 Experiments 35
8.1 Input Data . 35
8.2 Experiment Environment and Algorithms . 36
8.3 Results . 36

9 Conclusion 41

Bibliography 43

Appendix A Computations from Chapter 6 45

iv

1
Introduction

Since the emergence of vector machines in the late seventies, the scheduling of tasks that com-
pose an application has always been an important issue in the domain of High Performance
Computing. The evolution of parallel platforms with the increase of the number of nodes on
one side, the augmentation of heterogeneity within a node on the other side, tend to complex-
ify more and more the distributed architectures, and as a consequence, render their use less
efficient. Since the current scheduling policies are not sufficient, we need to adapt to the new
landscape.

Originally, a node was only composed of one or several computing units and, then, the
number of components within a node increased to become more diversified with CPUs, accel-
erators and, more recently, specialized units for analytics, I/O manipulations and checkpointing.

During the last decade, the development of graphical processor units (GPUs) made possible
the acceleration of computations by executing some part of the code (the most regular one) of an
application on one or more GPU. The programmers first designed their applications to take into
account the speedup that can be offered by GPUs and tuned their own code directly deciding
which part of the application should be executed on a GPU instead of a classical CPU. Specific
scheduling algorithms obtained by ad-hoc algorithms have also been proposed to determine the
assignment of each job on a CPU or a GPU in order to optimise a specific type of application,
such as biological sequence comparison [11].

Since the last 5 years, more general and heuristic algorithms have been proposed for schedul-
ing applications on hybrid machines composed of multiple CPUs and GPUs. These algorithms
are defined for any parallel application and some of them provide worst case performance guar-
antees on the produced schedule.

1.1 Problem Definition

In this work, we are interested in the problem of efficiently scheduling dependent tasks of an
application on a hybrid parallel platform composed of several identical CPUs and GPUs, in
order to minimize the overall completion time of the application (also called makespan). This
optimization problem can be summarized in the two following questions: given a set of tasks,
each one characterized by different processing times on CPU and GPU, on which CPU or which

GPU and at what time each task should start its execution in order to minimize the completion
time of the last finishing task?

The assumption about known processing times is relevant since the platforms where appli-
cations are executed usually have models to estimate the execution times of the tasks.

As the number of computing resources increases to thousands and even hundreds thousands
of cores, achieving good efficiency in executing large scale applications is an important issue
and is to be more and more complicated in the race to exascale1. The problem of designing
algorithms to efficiently schedule the tasks of a parallel application on the various processors
of a platform has been extensively studied and is still a big challenge nowadays.

As parallel and distributed platforms are growing, the sizes of applications that are sched-
uled on these platforms are also growing in size and a space exploration of all possible sched-
ules to find the optimal one for a given application is too costly, in terms of time, to be used.

Thus, we are looking for generic algorithms with good performances and limited time com-
plexity (polynomial in the size of the problem). Another interesting feature is to design algo-
rithms with bounded worse case guarantees in term of approximation ratio.

1.2 Main Constributions and Outline

Our principal objective is to design a generic algorithm for the scheduling problem on hybrid
CPU/GPU environments.

First, we study the heuristic algorithm HEFT and we improve the lower bound on its ap-
proximation ratio by giving an example in which the solution of HEFT is (1− 1

e)m times far
from the optimal solution.

We then study the different steps of the algorithm presented by Kedad-Sidhoum et al. [10],
denoted by HLP, and propose a worst case example, proving that the approximation ratio of
the algorithm has tight bounds. We also propose a refinement of the linear program used in the
first step as well as a new scheduling method, with a ranking function inspired by HEFT, to
assign each task to a processor following the assignment given in the previous step. We explain
that the new defined algorithm has an approximation ratio of at most 6 and provide a worst
case example showing that the approximation ratio is also bounded below by 6, with any List
Scheduling method, concluding by the tightness of the ratio.

Then, we extend the addressed problem to parallel platforms composed of multiple types
resources. We define a generic algorithm for scheduling dependent tasks on Q different sets
of identical resources and prove that Q(Q+ 1) is an upper bound for the approximation ratio
of the algorithm. We strongly believe that the ratio is tight with a worst case example derived
from the case where Q = 2 but no study is given here.

Finally, we apply the original algorithm HLP, the new defined algorithm and HEFT to a
set of 6 applications of linear algebra with dense matrix and compare the produced schedules.
The experiments shows that, although our modified algorithms have better performances than
HLP, HEFT remains the best algorithm in practice. However, as we said before, HEFT does
not guarantee any worst-case ratio.

1i.e., when parallel platforms will achieve a computing power of 1018 FLOPS (Floating-point Operations per
Second)

2

The outline of this report is as follows. In Chapter 2 we give a formal definition of the
addressed problem and explain the notations that are used in the other Chapters, as well as a
brief example of the problem. Chapter 3 presents a state of the art of the addressed problem, as
well as some other models of scheduling problems.

The HEFT algorithm is presented in Chapter 4. Chapter 5 shows the studies made on the
algorithm HLP and the new algorithm is defined in Chapter 6. The algorithm defined for the
extension of the problem to Q resources is presented in Chapter 7.

The results on the experiments and comparisons of the algorithms are presented in Chapter
8. Finally, we conclude and discuss about the future work in Chapter 9.

2
Preliminaries

In this Chapter, we give a formal definition of the problem and the model of the parallel ar-
chitecture considered. We also introduce all the notations and conventions that are used in the
following Chapters and we provide a simple example of the problem.

2.1 Problem Definition

We consider the problem of scheduling a parallel application consisted in a set of sequential
tasks which are linked by precedence constraints on a hybrid platform composed of multiple
identical CPUs and GPUs.

We model the parallel architecture as a single machine composed of m identical CPUs
and k identical GPUs, assuming no hierarchy, no data management nor communication delays
among any pair of processors. We also omit the management of the GPUs which is done by
some external CPUs. Notice that the number of processors m and k are also part of the problem
instance.

An instance of the application to be scheduled on this environment is a set T of n tasks.
Each task is denoted by Tj, with the index j going from 1 to n, and has two processing times,
p j and p j, depending whether the task is executed on a CPU or a GPU, respectively. The tasks
are linked by precedence constraints modeled by a Directed Acyclic Graph G = (V,E), where
each node j ∈V corresponds to the task Tj and each arc (i, j) ∈ E corresponds to a precedence
relation between the tasks Ti and Tj. In other words, the task Tj cannot start its execution
before the completion of all its predecessors Ti with (i, j) ∈ E. For simplicity, we may refer to
a task only by its index j instead of Tj. Moreover, the use of the words job and task is done
interchangeably.

The objective is to minimize the length of the schedule, known as makespan and denoted
as Cmax. Specifically, the makespan corresponds to the completion time of the last task on any
processor (assuming that all tasks are available at time zero). A critical assumption is that the
preemption of tasks is not allowed, i.e., its task is executed without interruptions.

Following the Graham’s 3-fields notation for scheduling problems, the above problem can
be denoted by (P1,P2) | prec | Cmax, where P1 and P2 correspond to the set of identical CPUs
and identical GPUs, respectively. Note that our problem is a special case of the problem of
scheduling on unrelated machines, denoted by R | prec | Cmax, for which no constant factor
approximation algorithm is known. On the other hand, if each task has the same processing
time on all CPUs and GPUs (i.e., p j = p j), (P1,P2) | prec | Cmax reduces to the problem of

scheduling on a single set of m+ k identical machines, denoted by P | prec | Cmax, which is
known to be N P-hard. Hence, the N P-hardness of our problem is directly implied since it
generalizes P | prec |Cmax.

We also extend our problem to the problem (P1, . . . ,PQ) | prec | Cmax of scheduling on Q
different types of resources, instead of only 2 types (CPUs and GPUs). In this case, we denote
by p j,q the processing time of a task Tj if it is executed on a processor of type q. Let also Mq
be the number of identical processors of type q. This is an even harder to approximate problem
which however is still a special case of R | prec | Cmax since each type of resources contains
several identical processors.

2.2 Notations and Other Definitions
In general, we denote by Cmax the makespan of a schedule created by an algorithm, while OPT
denotes the makespan of an optimal schedule. A task is called ready at a time t if it has not yet
been scheduled but all of its predecessors are already completed at t.

We call a task Ti predecessor, resp. successor, of Tj if there exists an arc (i, j) ∈ E, resp.
(j, i) ∈ E, in the directed acyclic graph G. Moreover, a task Ti is called ancestor of Tj if
there exists a directed path from i to j in G. We denote by Γ−(j), Γ+(j) and A(j) the sets of
predecessors, successors and ancestors of a task Tj, respectively.

For simplicity of presentation, we occasionally consider that the input instance contains
two fictive tasks Tstart and Tend , whose processing times are set equal to zero for any type of
resources. Moreover, we add an arc of precedence between the node corresponding to Tstart
and every node that has no predecessor as well as between every node that has no successor
and the node corresponding to Tend .

In what follows, we use the notion of approximation ratio in order to describe the perfor-
mance of an algorithm. The approximation ratio ρ of an algorithm is defined as the maximum
ratio, over all instances I of the problem, between the objective value of the schedule created
by the algorithm and the objective value of an optimal schedule. More specifically, we have:

ρ = max
I

{
Cmax(I)
OPT (I)

}
In the case where the instance is not known in advance by the algorithm, we say that we are

in the online mode. More specifically, we consider that the tasks arrive online the one after the
other together with their characteristics (processing times, predecessors) and the algorithm has
to irrevocably decide at the arrival of each task on which processor and during which period
it will be executed. The performance of an online algorithm is measured by an adaptation of
the approximation ratio, known as competitive ratio, which is defined as the maximum ratio
between the objective value of the schedule produced by the online algorithm and the objective
value of an optimal off-line schedule, over all instances.

2.3 An Example
In this section we give a simple example to show the execution of tasks in an hybrid CPU/GPU
environment. Our example also shows that the well-known List Scheduling policy introduced

6

by Graham [7] which achieves a constant-factor approximation ratio for P | prec | Cmax, can
produce a schedule with arbitrarily bad performance for our problem. List Scheduling is a
greedy algorithm that does not introduce unnecessary idle times and whenever a processor be-
comes idle, it selects for executing the first ready task.

Consider an application with three tasks which has to be processed on a single CPU and a
single GPU. The task T3 is a successor of both T1 and T2, while T1 and T2 are independent. The
processing times of the tasks are as follows:

p1 = 2 and p1 = 1
p2 = 10 and p2 = 1
p3 = 1 and p3 = 1

Assume that the List Scheduling policy will schedule first the task T1 on the GPU, priori-
tizing the processor of the smallest processing time for it. Then, the CPU processor is idle at
time zero and hence the task T2 is scheduled on it. When both tasks have completed, the task
T3 will be scheduled on the GPU. The constructed schedule is shown in Figure 2.1.

CPU

GPU

0 10 11

T1 T3

T2

Figure 2.1: Schedule of the List Scheduling algorithm. Note that the gray areas correspond to
(mandatory) idle times.

As we can see in this example, the choice of not introducing unnecessary idle times in the
schedule is not well-suited for the scheduling on hybrid platforms. In our example, the task
T2 is misplaced on the idle CPU by the List Scheduling algorithm but it is easy to see that in
the optimal schedule it should be executed on the GPU. Concluding, this example shows that
the choice of the type of resources for the execution of each task is critical when scheduling in
non-identical platforms.

3
State of the art

Scheduling tasks of a parallel program is an old topic and there exist a lot of studies from the
1970s and the first vector machines. Since then, the subject received a particular attention with
the successive generations of parallel and distributed machines and, during the last decade, the
emergence of hardware accelerators.

In this chapter, we describe the state of the art of the addressed problem by presenting
general theoretical results in both off-line and on-line mode as well as general heuristics for
scheduling independent and dependent tasks on identical, hybrid or unrelated parallel ma-
chines. Notice that all the studies presented here are for the makespan minimization problem
when the preemption of tasks is not allowed, all processing times are deterministically defined
and no communication costs exist between tasks, unless it is clearly specified.

3.1 Identical Platforms

One of the first and most known result in scheduling theory is Graham’s List Scheduling al-
gorithm [7] for the problem P | prec |Cmax of scheduling tasks with precedence constraints on
a set of identical machines. Note that the List Scheduling algorithm is in fact an online algo-
rithm. The competitive ratio of this algorithm is 2− 1

m , where m is the number of processors.
Svensson [18] has showed that it is N P-hard to improve this ratio assuming a new variant of
the unique games conjecture, even in the case of unit processing times.

In the case of independent tasks (P ||Cmax), Graham [8] has also proposed an off-line variant
of List Scheduling where the tasks are presented to the algorithm by non-increasing order of
their processing time, known as the Largest Processing Time (LPT) policy. The approximation
ratio of this algorithm is 4

3 −
1

3m and it is tight. Hochbaum and Shmoys [9] reduce this ratio
by proposing a Polynomial Time Approximation Scheme (PTAS) using a dual approximation
approach. Specifically, for any ε > 0, they describe a (1+ ε)-approximation algorithm with a

running time in O((n
ε
)

1
ε2). Moreover, two faster algorithms have been also presented for values

of ε close to 1
5 and 1

6 .
The online problem P | r j−online |Cmax where a set of independent tasks that arrive over

time has to be scheduled on a set of identical processors, has been also studied in the bibliog-
raphy. In this online model, we assume that a task Tj arrives at an unknown time r j together
with its characteristics. The algorithm cannot modify the execution of tasks that is already done
by the time r j; however, it can modify the schedule after time r j. For this problem, Chen and

Vestjens [4] proposed an adaptation of LPT, achieving a tight competitive ratio of 3
2 . They have

also provided an absolute lower bound of 1.3473 for the competitive ratio of this problem.

3.2 Unrelated Platforms
In the case of unrelated platforms, where tasks have a different processing time on each pro-
cessor, Lenstra et al. [13] proposed a linear program and a rounding method to schedule a set
of independent tasks off-line (R ||Cmax). They showed that the described algorithm achieves an
approximation ratio of 2 and they proved that it is N P-hard to have a polynomial algorithm
with a ratio strictly less than 3

2 . The authors also proposed a PTAS in the case of a fixed number
of processors, i.e., the complexity of this algorithm is exponential to the number of processors.
Shchepin and Vakhania [16] proposed a better rounding method used with the linear program
of Lenstra et al. [13] which improves the approximation ratio of the algorithm from 2 to 2− 1

m .
This is so far the best known ratio for this problem.

For the on-line version of the problem (R | prec | Cmax), Azar and Epstein [2] studied the
model of scheduling tasks with precedence constraints, where a task becomes known only when
all its predecessors have been completed. They showed a lower bound on the competitive ratio
of Ω(

√
m), for both known and unknown processing times.

Many heuristics have been also designed for the off-line scheduling problem with prece-
dence constraints on unrelated processors. Unlike the previous algorithms with worst-case ap-
proximation guarantees, these heuristics take also into account communication costs between
tasks. The addressed problem is denoted by R | prec,c jk |Cmax, where c jk is the additional com-
munication cost if the tasks Tj and Tk, where (j,k)∈ E, are not executed on the same processor.
Sakellariou and Zhao [15] proposed a hybrid heuristic taking into account both the processing
times of the tasks and the structure of the graph of precedences, while the well-known Het-
erogeneous Earliest Finish Time (HEFT) algorithm, presented by Topcuoglu et al. [19], uses a
ranking method to order the tasks before scheduling. Several other heuristics are also presented
in the literature (see for example [1, 12]).

3.3 Hybrid Platforms
Since the emergence of hardware accelerators, algorithms have been designed for scheduling
tasks on hybrid machines composed of identical processors (CPU) and one or several acceler-
ators (GPU). Kedad-Sidhoum et al. presented two off-line algorithms for scheduling indepen-
dent and dependent tasks on m CPUs and k GPUs. The first algorithm [3] is based on dynamic
programming and gives an approximation ratio of 4

3 −
1
3k for the case of independent tasks;

notice that this ratio is independent on the number of CPUs. The second algorithm [10] is the
first generic method that achieves a constant-factor approximation ratio for scheduling tasks
linked by precedence constraints on hybrid platforms. Its approximation ratio is 6 and, for the
rest of the work, we will call this algorithm HLP (Heterogeneous Linear Program). Note also
that a counter-example showing that HEFT cannot have an approximation ratio better than m

2
has been provided in [3].

For the on-line case, Chen et al. [5] proposed the first algorithm for scheduling independent
tasks over a list, achieving a competitive ratio of 3.85. Two other algorithms are proposed in

10

the case where there is an equal number of CPUs and GPUs and for the case where there is
only one GPU achieving better competitive ratios. The authors also show that there exist no
algorithm with a competitive ratio smaller than 2 for this problem and that the classical List
Scheduling algorithm does not provide any performance guarantee on hybrid machines.

If we increase the degree of heterogeneity, other algorithms have been proposed for schedul-
ing tasks on platforms with Q≥ 2 different types of resources, where each type is composed of
several identical processing units. Gehrke et al. [6] presented a PTAS for scheduling indepen-
dent tasks if the number of resource types is fixed.

Moreover, Liu and Liu [14] studied the restricted assignment model, where a task can only
be processed on a particular type of processors. The authors showed that the approximation
ratio obtained by any list scheduling algorithm adapted to Q different types of resources is
at most 1+Q−minq(

1
Mq

), where Mq is the number of identical processors of type q, with

q = 1, · · · ,Q. This result is consistent with Graham’s List Scheduling of ratio 2− 1
m with only

one type of processors.

Finally, Shmoys et al. [17] presented a method to transform an off-line algorithm for
scheduling tasks on parallel systems of any type to an algorithm for the same problem in on-line
mode with release dates for the tasks. They proved that the competitive ratio of the produced
algorithm is no more than twice the approximation ratio of the off-line algorithm used.

4
The HEFT Algorithm

In this chapter, we present HEFT (Heterogeneous Earliest Finishing Time), a heuristic algo-
rithm proposed by Topcuoglu et al. [19] for the problem of scheduling tasks on unrelated
processors, taking into account precedence relations and communications between tasks. In
the following, we describe the algorithm and we propose an example slightly improving the
lower bound for HEFT by Kedad-Sidhoum et al. [3].

4.1 The Algorithm
The HEFT algorithm is defined to construct a schedule using a simple heuristic and is composed
of two steps:

1. Task Prioritizing: The priority rank of each task is computed and the list of tasks is sorted
by decreasing order of the ranks.

2. Processor Selection: Tasks are removed one by one from the list and are scheduled on
the processor which minimizes the finishing time of the task.

The algorithm is defined for the model of unrelated machines, where a task may have as
many processing times as the number of processors, with additional communication costs if the
tasks linked by precedence are not executed on the same processor. Let γp(j) be the average of
the processing times of a task Tj over all processors, i.e., γp(j) = ∑

m
i=1 pi, j

m . The communication
cost incurred by the precedence constraint between the tasks Ti and Tj, with Ti executed on
processor mi and Tj on m j, is denoted by ci, j and the average among all communication costs,
with any combination of mi and m j, is denoted by γc(i, j). Notice that the communication cost
is reduced to zero if tasks Ti and Tj are executed on the same processor.

The ranks are recursively computed, starting from the tasks with no successors, as follows:

rank(Tj) = γp(j)+ max
i∈Γ+(j)

{γc(i, j)+ rank(Ti)} ∀ j ∈V

HEFT considers the tasks in non-increasing order of their ranks. For each task Tj in this
order, HEFT determines the pair of processor and starting time which minimizes the completion
time of Tj with respect to the already created schedule for the previous tasks of the order, and
schedules appropriately Tj. Notice that a task can be placed between two already scheduled
tasks if the idle period is sufficient to process the task, taking into account the communication
costs, if any. Moreover, based on the way of computation of ranks, each task is scheduled after
all its ancestors. Hence, the schedule created by HEFT is feasible.

4.2 A Counter-Example of at Least (1− 1
e)m

In this section, we present an example slightly improving the lower bound for the worst case
ratio of HEFT.

In order to do this, we propose a simplified instance of independent tasks to be scheduled
on m identical processors (CPUs) and one processor different from the others (GPU). For this
instance, the algorithm will produce a schedule with the value of the resulting makespan being
a function of m while the makespan of the optimal solution is constant.

Theorem 4.2.1 The approximation ratio of the HEFT algorithm is at least (1− 1
e)(m+1)+ 1

m .

Recall that, in the case of only two different types of processors (CPU and GPU), we denote
by p j and p j the processing times of the task Tj on a CPU and a GPU, respectively, so that
pi, j = p j for i = 1, · · · ,m and pm+1, j = p j. The set of tasks of the instance is as follows, with i
going from 1 to m−1:

Type Number of task Processing time on CPU/GPU
A0 1 1/1
B0 m 1/ 1

m2

Ai 1 mi

m(m+1)i−1 − 1
m/

mi

m(m+1)i−1 − 1
m

Bi m mi

m(m+1)i−1 − 1
m/

1
m2

It is easy to check that every processing time is greater than zero. We consider indepen-
dent tasks, hence all communication costs are zero. The rank of each task is then the average
computation time of the task over all processors and is calculated as follows:

rank(Tj) =
mp j + p j

m+1

The rank of tasks A0 and Ai, ∀i = 1, · · · ,m−1 are clearly:

rank(A0) = 1

rank(Ai) =
mi

m(m+1)i−1 −
1
m

=
mi− (m+1)i−1

m(m+1)i−1

The rank of tasks B0 and Bi, ∀i = 1, · · · ,m−1 are as follows:

rank(B0) =
m+ 1

m2

m+1
=

m3 +1
m2(m+1)

rank(Bi) =

mi

(m+1)i−1 −1+ 1
m2

(m+1)
=

mi− (m+1)i−1

(m+1)i +
1

m2(m+1)

14

4.2.1 Task Ordering
Before scheduling, the algorithm sorts the tasks in decreasing order of their rank.

Proposition 4.2.2 For the proposed instance, the order of the tasks created by HEFT is as
follows:

A0→ B0→ A1→ B1→ ··· → Ai→ Bi→ Ai+1→ ··· → Bm−1

Proof:
For the order on the tasks A0 and B0:

rank(A0)≥ rank(B0)

1≥ m3 +1
m2(m+1)

m3 +m2 ≥ m3 +1

For the tasks B0 and A1:

rank(B0)≥ rank(A1)

m3 +1
m2(m+1)

≥ m−1
m

m3 +1≥ (m2 +m)(m−1)

m3 +1≥ m3−m

For the tasks Ai and Bi, ∀i = 1, · · · ,m−1:

rank(Ai)≥ rank(Bi)

mi− (m+1)i−1

m(m+1)i−1 ≥ mi− (m+1)i−1

(m+1)i +
1

m2(m+1)
m(m+1)(mi− (m+1)i−1)≥ m2(mi− (m+1)i−1)− (m+1)i−1

mi+2 +mi+1−m2(m+1)i−1−m(m+1)i−1 ≥ mi+2−m2(m+1)i−1− (m+1)i−1

mi+1−m(m+1)i−1 ≥−(m+1)i−1

mi+1 ≥ (m−1)(m+1)i−1

For the tasks Bi and Ai+1, ∀i = 1, · · · ,m−2:

rank(Bi)≥ rank(Ai+1)

mi− (m+1)i−1

(m+1)i +
1

m2(m+1)
≥ mi+1− (m+1)i

m(m+1)i

mi+2−m2(m+1)i−1 +(m+1)i−1 ≥ mi+2−m(m+1)i

(1−m2)(m+1)i−1 ≥−m(m+1)(m+1)i−1

1−m2 ≥−m2−m

Therefore, the order claimed over the ranks is correct and the Proposition 4.2.2 follows. 2

4.2.2 Task Scheduling
To schedule a task, the algorithm selects the processor which minimizes the completion time
of that task. Let assume that in case of a tie, the algorithm selects in priority the GPU before
any CPU and chooses between two CPUs arbitrarily. Notice that, in our case, all tasks are
independent and then the scheduling method does not introduce idle times in the schedule. The
schedule can then be constructed by knowing the list of tasks assigned to each processor.

The algorithm will schedule the task A0 on the GPU and the m tasks B0 on the m CPUs.
The task A1 will then be scheduled on the GPU and tasks B1 on the CPUs and so on until all
tasks are scheduled. In the resulting schedule, all tasks of type A are on the GPU and all tasks
of type B are on the m CPUs. All processors become idle at the same time and the makespan is
as follows:

Cmax = 1+
m−1

∑
i=1

mi

m(m+1)i−1 −
1
m

= 1− m−1
m

+
m−1

∑
i=1

mi−1

(m+1)i−1

=
1
m
+

m−2

∑
j=0

(
m

m+1
) j =

1
m
+

1− (m
m+1)

m−1

1− m
m+1

=
1
m
+

1− (m
m+1)

m−1

1
m+1

=
1
m
+(m+1)(1− (

m
m+1

)m−1)

Taking a value of m sufficiently large we have (m
m+1)

m−1→ 1
e and the value of Cmax tends

to 1
m +(m+1)(1− 1

e). Thus, we have:

Cmax = O(m)

The optimal makespan of the instance is achieved when all tasks of type A are on the m
CPUs and all tasks of type B are on the GPU. The resulting makespan is OPT = 1.

The left side of Figure 4.1 shows a schedule produced by the algorithm HEFT while the
right side shows the optimal schedule of the given instance.

Summarizing, we can deduce that there is an instance for which HEFT has an approxima-
tion ratio at least (1− 1

e)(m+1)+ 1
m , completing the proof of Theorem 4.2.1.

16

0 Cmax

GPU A0 A1 Am−1· · ·

CPUs

B0

B0

B1

B1

Bm−1

Bm−1

· · ·

· · ·

...
...

.... . .

0 OPT

Bi

A0

A1

...

Am−1

Figure 4.1: Possible schedule of HEFT (left) and optimal schedule (right). Notice that the gray
area represents idle time.

5
The HLP Algorithm

In this chapter, we study the 6-approximation algorithm HLP presented by Kedad-Sidhoum et
al. [10] designed for the problem of scheduling dependent tasks on hybrid platforms and we
propose a worst case example showing that its approximation ratio is tight.

5.1 The Algorithm

In order to solve the addressed scheduling problem, the HLP algorithm proceeds in two main
steps:

• Assignment Step: Each task is assigned to a type of processor, either CPU or GPU, by
solving a Linear Program and by rounding the obtained fractional optimal solution to an
integral one.

• Scheduling Step: Each task is scheduled with a variant of the List Scheduling algorithm,
taking into account the assignment obtained in the previous step.

5.1.1 Assignment Step

To solve the assignment problem, Kedad-Sidhoum et al. [10] proposed an integer linear pro-
gram that provides a lower bound to the optimal makespan based on the two classical lower
bounds: the total load of each type of processors and the critical path. The critical path is the
path from the start node to the end node which have the maximal total processing time and that
cannot be reduced, no matter how many processors are considered. In order to do this, they
defined a binary assignment variable for each task Tj as follows:

x j =

{
1 if Tj is processed on a CPU
0 otherwise

Moreover, for each task Tj, they introduced a variable C j representing the completion time of
Tj. Finally, let λ be a variable corresponding to the lower bound of the makespan.

The integer linear program is defined as follows:

minimize λ subject to

Ci + p jx j + p j(1− x j)≤C j ∀ j = 1, · · · ,n, ∀i ∈ Γ
−(j) (5.1)

C j ≤ λ ∀ j = 1, · · · ,n (5.2)
n

∑
j=1

p jx j ≤ mλ (5.3)

n

∑
j=1

p j(1− x j)≤ kλ (5.4)

x j ∈ {0,1} ∀ j = 1, · · · ,n (5.5)

Constraints 5.1 represent the precedence relation between two tasks, imposing that a task
cannot start its execution before the completion of all its predecessors. Constraints 5.2 are used
to lower bound the makespan λ , which is the maximum completion time among all the tasks.
In this way, Constraints 5.1 and 5.2 imply that the makespan cannot be smaller than the critical
path. Constraints 5.3 and 5.4 correspond to the load. They impose that the total work load of
all the tasks executed on the CPUs, resp. GPUs, is not greater than mλ , resp. kλ . Finally,
Constraints 5.5 are the integrality constraints, ensuring that a task is executed either on a CPU
or on a GPU.

Since an optimal solution for the above program cannot be computed in polynomial time,
we relax the integrality constraints. The assignment variables x j are now allowed to be real
values between 0 and 1, corresponding to the assignment of a fraction of the task Tj to a CPU
and the other fraction to a GPU.

The relaxed linear program, denoted by (LP1), is as follows:

minimize λ subject to

Ci + p jx j + p j(1− x j)≤C j ∀ j = 1, · · · ,n, ∀i ∈ Γ
−(j) (5.6)

C j ≤ λ ∀ j = 1, · · · ,n (5.7)
n

∑
j=1

p jx j ≤ mλ (5.8)

n

∑
j=1

p j(1− x j)≤ kλ (5.9)

x j ∈ [0,1] ∀ j = 1, · · · ,n (5.10)

Once an optimal solution of (LP1) is computed, each assignment variable is rounded to
either 1 or 0, in order to have each task fully assigned to either a CPU or a GPU, respectively.
The fractional assignment variables of the optimal solution are denoted by xR

j , ∀ j = 1, · · · ,n.
For each Tj, the rounding policy is as follows:

x j =

{
1 if xR

j ≥ 1
2

0 otherwise

20

5.1.2 Scheduling Step

Once the assignment has been defined for all tasks, a variant of List Scheduling is used. Specif-
ically, at each time where a CPU, resp. GPU, is idle, the algorithm schedules on it one of the
ready tasks assigned to the CPU resources, resp. GPU resources, at the previous step.

We denote by S the schedule produced by the algorithm and by α the assignment of the
tasks obtained by the previous step. The scheduling method used is as follows:

Algorithm 1
1: S← /0
2: while S 6= T do
3: Let R←{Tj | Γ−(j)⊆ S} be the set of ready tasks
4: Compute the earliest possible starting time for all tasks in R with respect to the prece-

dence constraints and the assignment α

5: Schedule the task Tj ∈ R with the smallest possible starting time
6: S← S∪{Tj}

5.2 Worst Case Example

In this section, we propose an instance of the problem for which the algorithm HLP builds
a schedule with a makespan being close to 6 times greater than the makespan of the optimal
solution, leading to the following theorem:

Theorem 5.2.1 The approximation ratio of HLP is at least 6.

5.2.1 Instance of the Problem

Consider a parallel system with an equal number m of CPUs and GPUs, with m large enough.
The list of tasks T , with the graph of precedence between the tasks shown in Figure 5.1, is
defined as follows:

Type Number of tasks Processing time on CPU/GPU
A 1 1 / ∞

B 1 ∞ / 1
C 2(m+1)(m−2) 1

2m−1 / 1
D 1 2m−1 / 1
E 1 ∞ / m+2
J 2(m+1)(m−1) 1 / 1

2m−1

J

D

B C

A E

Figure 5.1: Precedence graph of the tasks

5.2.2 Solving the Linear Program

Proposition 5.2.2 A possible optimal solution of (LP1) gives λ = m+ 2 and the fractional
assignment variables, with ε > 0:



xA = 1
xB = 0
xC = 1

2 − ε

xD = 1
2

xE = 0
xJ = 1

2

Proof:
It is easy to see that no solution with λ < m+ 2 is possible since the task E is forced to be
scheduled on a GPU with a processing time m+2. Thus, λ ≥ m+2.

We then have to make sure that all constraints of (LP1) are verified in order to prove that
λ ≤ m+2.

For constraint 5.6:

CA = pAxA + pA(1− xA) = 1

CB =CA + pBxB + pB(1− xB) = 2

CC =CA + pCxC + pC(1− xC) = 1+
1

2m−1
(
1
2
− ε)+(

1
2
+ ε) =

3
2
+

1
4m−2

+ ε− ε

2m−1

CD =CB + pDxD + pD(1− xD) = 2+
2m−1

2
+

1
2
= m+2

CE = pExE + pE(1− xE) = m+2

CJ = pJxJ + pJ(1− xJ) =
1
2
+

1
2m−1

1
2
=

2m
4m−2

For constraint 5.7, the relation C j ≤ m+2,∀ j is straightforward since ε > 0.

22

For constraint 5.8:

mλ ≥
n

∑
j=1

p jx j

m(m+2)≥ pAxA +2(m+1)(m−2)pCxC + pDxD +2(m+1)(m−1)pJxJ

m2 +2m≥ 1+2(m+1)(m−2)
1

2m−1
(
1
2
− ε)+(2m−1)

1
2
+2(m+1)(m−1)

1
2

m2 +2m≥ 1+
2(m2−m−2)

2m−1
(
1
2
− ε)+

2m−1
2

+m2−1

m2 +2m≥ m2 +m− 1
2
+

m2−m−2
2m−1

−2ε
m2−m−2

2m−1

m≥ m2−m−2
2m−1

− 1
2
−2ε

m2−m−2
2m−1

m(2m−1)≥ m2−m−2− 2m−1
2
−2ε(m2−m−2)

2m2−m≥ m2−2m− 3
2
−2ε(m2−m−2)

0≤ m2 +m+
3
2
+2ε(m2−m−2)

The last inequality is true since m is large enough and ε > 0.

For constraint 5.9:

kλ ≥
n

∑
j=1

p j(1− x j)

mλ ≥ pB(1− xB)+2(m+1)(m−2)pC(1− xC)+ pD(1− xD)+ pE(1− xE)

+2(m+1)(m−1)pJ(1− xJ)

m(m+2)≥ 1+2(m+1)(m−2)(
1
2
+ ε)+

1
2
+(m+2)+2(m+1)(m−1)

1
2m−1

1
2

m2 +2m≥ 7
2
+m+(m2−m−2)+2ε(m2−m−2)+

m2−1
2m−1

2m≥ 3
2
+2ε(m2−m−2)+

m2−1
2m−1

2m(2m−1)≥ 6m−3
2

+2ε(m2−m−2)(2m−1)+m2−1

4m2−2m≥ 3m− 3
2
+2ε(2m3−3m2−3m+2)+m2−1

0≤ 3m2−5m+
5
2
−2ε(2m3−3m2−3m+2)

The last inequality is true since m is large enough and ε > 0.
Finally, the constraint 5.10 is easily checked and thus we have λ ≤ m+2.

Since λ ≤ m+ 2, λ ≥ m+ 2 and every constraints are satisfied, we can conclude that the
claimed proposition 5.2.2 is true. 2

5.2.3 Rounding and Scheduling Phases
After solving the linear program, the fractional assignment variables are rounded to the values:

xA = 1
xB = 0
xC = 0
xD = 1
xE = 0
xJ = 1

Figure 5.2 shows a possible output schedule for the variant of List Scheduling used. The
order on the list of tasks considered for the List Scheduling is T = {E,J,A,C,B,D}, where the
multiple tasks of the types C and J are arbitrarily ordered.

GPU

E

B

C

CPU

A

J

D

0 2m 4m−2 6m−3

Figure 5.2: Possible schedule for the described instance. Notice that the gray areas represent
idle times

We can observe that the resulting makespan is Cmax = 6m− 3, compared to the optimal
value m+2 we have the following ratio:

ρ =
6m−3
m+2

= 6− 15
m+2

Thus, we can conclude that the approximation ratio of HLP is bounded below by 6, validat-
ing Theorem 5.2.1.

Combining this result with the Theorem 6 given by Kedad-Sidhoum, we deduce the follow-
ing statement:

Corollary 5.2.3 The algorithm HLP has a tight approximation ratio of 6.

24

6
Modifications on HLP

In Kedad-Sidhoum et al. [10], it is proved that the used policy of rounding the assignment
variables is best possible. Moreover, the counter-example that we gave in the previous chapter
is based on the fact that the scheduling algorithm can consider the tasks in an arbitrary bad
order non respecting the critical path. For these reasons, we modified the constraints of the
linear programs and the scheduling method in order to improve the schedules constructed by
the HLP algorithm, as well as its approximation ratio. However, even with this refined and
more complicated algorithm, denoted by refined HLP, we cannot achieve an approximation
ratio better than 6.

6.1 Modifications of the Linear Program
In this section, we refine the set of constraints of the linear program of HLP, described in
Section 5.1.1, in order to give a better lower bound for the assignment problem. The new
described linear program is denoted by (LP2).

Recall that we denote by A(j) the set of ancestors of the task Tj and that the extended graph
G = (V,E) contains a starting task Tstart and an ending task Tend as described in Section 2.2.

In order to refine the linear program we modify the third and fourth constraints of (LP1),
which are two constraints of load on CPUs and on GPUs, to create two constraints of partial
load on CPUs and on GPUs for each task. Each task has a non-empty set of ancestors, con-
taining at least the initial task Tstart , and can only start after the execution of all its ancestors is
done.

The new constraints, Constraints 6.2 and 6.3, express the fact that a task cannot start its
execution before the work load of all its ancestors is done on the m CPUs and on the k GPUs.
Between the two constraints, only the one with the greatest sum will have an impact on the
linear program.

Notice that the two original constraints are included in these new sets of constraints because
we have λ =Cend and node end ∈V .

We also delete the second type of constraint and change the objective value to be λ =
Cend . These changes are relevant and do not impact the behavior of the linear program because
the task Tend is a descendent of every other task and thus it is only required to minimize its
completion time.

The variables of the linear programs are x j and C j, ∀ j = 1, · · · ,n, and the variable Cend
which is minimized in the objective function and corresponds to the makespan. For simplicity,
we set xstart = 1, Cstart = 0 and xend = 1. Notice that the integer linear program only differs in

the last constraint and is also refined as described above. The new linear program, denoted by
(LP2), is as follows:

minimize λ =Cend subject to

Ci + p jx j + p j(1− x j)≤C j ∀ j ∈V, ∀i ∈ Γ
−(j) (6.1)

∑
i∈A(j)

pixi

m
+ p jx j + p j(1− x j)≤C j ∀ j ∈V (6.2)

∑
i∈A(j)

pi(1− xi)

k
+ p jx j + p j(1− x j)≤C j ∀ j ∈V (6.3)

x j ∈ [0,1] ∀ j = 1, · · · ,n (6.4)

Once an optimal solution is found for (LP2), we use the same rounding method to get
integral values of the variables x j as in HLP.

6.2 Modifications of the Scheduling Method
In this section, we propose a task prioritizing method to assign each task a rank, inspired by the
ranking function of HEFT, and define a partial order of the tasks before using a variant of List
Scheduling.

The motivation of assigning a priority to each task is to take into account the notion of
precedence between the tasks, in order to prioritize the scheduling of critical tasks before the
scheduling of independent tasks. A critical task is a task belonging to a critical path.

The rank of each task is computed after the rounding operation of the assignment variables
x j and corresponds to the length, in the sense of processing time, of the longest path between
this task and the ending task. Thus, as in HEFT, each task will have a bigger rank than all its
successors.

The computation of the rank is similar to the one used during the HEFT algorithm described
in Chapter 4:

Rank(Tj) = p jx j + p j(1− x j)+ max
i∈Γ+(j)

{Rank(Ti)}

After computing all ranks, the list of tasks T , containing every task but Tstart and Tend , is
split in two separate lists TCPU , resp. T GPU , containing the tasks to be executed on a CPU, resp
GPU, with respect to the assignment variables x j. The two lists are then separately sorted in
non-increasing order of the rank of the tasks and ties are broken by giving priority to the task
which have the longest path to the end node, in terms of number of nodes in the extended graph
of precedences.

A variant of List Scheduling algorithm is then used to construct the schedule of the instance,
with two systems of identical machines and two lists of tasks. The new defined algorithm,
denoted by refined HLP, is as follows:

1. Solve (LP2) to have the fractional assignment variables x j

2. Round the variables x j to integral values 0 or 1

26

3. Compute the rank of each task Tj

4. Split the list T in TCPU and T GPU wrt. the assignment x j and sort the two lists by
decreasing rank of the tasks

5. Build a feasible schedule by running two List Scheduling algorithms in parallel, one for
the CPU side and one for the GPU side, taking into account the precedence relations of
the tasks

6.3 Worst Case Example
The refined HLP algorithm keeps the same rounding method than HLP and the new scheduling
method only change the order in which the tasks are scheduled by List Scheduling, not changing
fundamentally how the method works. The two algorithms only differ in the set of constraints
of the linear program used for obtaining the fractional assignment variables x j.

The constraints of (LP2) are more restrictive than the constraints of (LP1) in a sense that,
for any instance of the problem, the optimal solution of (LP2), denoted by λ2, is greater or
equal to the optimal solution of (LP1), denoted by λ1. Thus, λ1 ≤ λ2 and it is easy to show,
following the argument of Kedad-Sidhoum et al., that λ2 ≤ C∗max, where C∗max is the optimal
makespan with integral assignment.

We can deduce that the proof of Kedad-Sidhoum et al. leading to the Theorem 6 is also
valid for our algorithm, concluding that the approximation ratio of the refined HLP algorithm
is at most 6.

Theorem 6.3.1 The refined HLP algorithm has a tight approximation ratio of 6.

In the following, we propose an instance of the problem for which the refined HLP algo-
rithm creates a schedule with a makespan close to 6 times the optimal makespan, with any
scheduling method.

6.3.1 Instance of the Problem
Consider a parallel system with an equal number m of CPUs and GPUs, with m≥ 4.

The list of tasks is composed of a single independent task TA that can only be processed on
a GPU and l groups of 2m+1 tasks Ti, ∀i = 1, · · · , l and 1 < l ≤m. Figure 6.1 shows the graph
of precedence of the tasks. Notice that every task of the same type is independent with each
other and that every task of type Ji have to be completed before the execution of any task of
type Ji+1, ∀i = 1, · · · , l−1.

The processing times of the tasks are as follows:

Type Number of task Processing time on CPU/GPU
A 1 ∞ / (l +2)m

Ji, i odd 2m+1 2m−1 / 1
Ji, i even 2m+1 1 / 2m−1

· · ·

A

J1 J2 Jl−1 Jl

Figure 6.1: Precedence graph of the instance of tasks

6.3.2 Solving the Linear Program
Clearly the optimal makespan with this instance is OPT = (l + 2)m by placing task TA on a
GPU and every task TJi on the processor type which gives a processing time of 1.

Proposition 6.3.2 A possible optimal solution of (LP2) gives λ = Cend = (l + 2)m and the
fractional assignment, with i = 1, · · · , l and ε > 0 small enough:

xA = 0
xJi =

1
2 if i is odd

xJi =
1
2 − ε if i is even

The associated variables C j are as follows:
CA = (l +2)m
CJ1 = m
CJi = (i+1)m+

⌊ i−2
2

⌋
− 1

2m +2
⌊ i

2

⌋
ε(m−1) ,∀i = 2, · · · , l

Proof:
It is easy to see that no solution with λ < (l + 2)m is possible because of the first constraint
(6.1) and the task TA:

Cstart + pA ≤CA

(l +2)m≤CA

Since Cend ≥CA we have λ =Cend ≥ (l +2)m.

It is then required to check that every constraint of (LP2) is satisfied by the variables x j, C j
and λ = (l +2)m, to conclude that the solution is an optimal solution of (LP2).

Details on the computations can be found in Appendix A.

Hence, Proposition 6.3.2 is verified. 2

6.3.3 Rounding and Scheduling Phases
After solving the linear program, the variables C j are no longer relevant and only the assignment
variables x j are used to construct a feasible schedule with m CPUs and k GPUs.
During the rounding phase, each variable x j is either rounded to the integral value 1 or 0 to

28

determine whether the task Tj will be processed on a CPU or a GPU. The assignment variables
corresponding to our instance after the rounding phase are as follows:

xA = 0
xJi = 1 if i is odd
xJi = 0 if i is even

After the rounding phase, there is only one possible makespan with this assignment of tasks,
independant of the scheduling method used to construct the schedule.

Figure 6.2 shows the resulting schedule with the given instance and assignment, with an
odd value of l in this example. Individual tasks are not explicitly placed in the schedule since
tasks of a same type are independent to each other. Instead, we group every task of the same
type in a block labelled by the type of task scheduled in that block.

The obtained makespan is Cmax = 3l(2m− 1), compared to the optimal value (l + 2)m we
have the approximation ratio:

ρ =
l(6m−3)
(l +2)m

The ratio tends to 6 as l grows large and if we set l = m we obtain the simplified approxi-
mation ratio:

ρ =
m(6m−3)
m(m+2)

= 6− 15
m+2

Thus, with m and l large enough we built a schedule with a makespan 6 times greater than
the optimal makespan possible with the given instance.

We conclude that the approximation ratio of the refined HLP algorithm is at least 6 and
Theorem 6.3.1 holds.

0
6m−3

12m−6
(l +2)m

6lm−3l

GPU

A

J2 J4 Jl−1· · ·

CPU J1 J3 Jl· · ·

Figure 6.2: Resulting schedule of the algorithm for the instance with an odd value of l. Notice
that the gray areas represent idle times.

30

7
Generalization on Q Resources Types

In this chapter, we generalize the algorithm presented in Chapter 6 to address the problem of
scheduling tasks linked by precedence constraints on a parallel system composed of multiple
sets of resources, with each set containing identical processors. We also propose an analysis of
the algorithm to give an upper bound of the approximation ratio depending on the number of
resource types.

The studied problem only differs from the previous chapters in the parallel system consid-
ered. Instead of having only two types of processors, called CPUs and GPUs, we study here
a system having Q different types of resources with each type having Mq identical processors.
The total number of processors of the system is m = ∑

Q
q=1 Mq. Recall that we denote by p j,q

the processing time of task Tj if it is executed on a processor of type q.
The algorithm that we analyze is the same as the refined HLP, where each step is adapted

to take into account the Q types of resources instead of only a CPU side and a GPU side. In the
following sections, we present the modified linear programs and the rounding and scheduling
methods used by the algorithm to solve the scheduling problem. We then analyze the structure
of the schedule produced by the algorithm and prove that its approximation ratio is at most
Q(Q+1).

7.1 Linear Program

In this section, we adapt the integer and relaxed linear programs defined in Section 6.1 for the
assignment problem with Q types of resources.

Regarding the set of tasks to be scheduled, the variables keep the same notations except
from the assignment variables which are now defined as follows:

x j,q =

{
1 if Tj is processed on a processor of type q
0 otherwise ∀ j ∈V, ∀q = 1, · · · ,Q

Then, the variables of the linear programs are x j,q and C j, ∀ j = 1, · · · ,n and we aim to
minimize Cend . The new integer linear program is as follows:

minimize λ =Cend subject to

Ci +
Q

∑
q=1

p j,qx j,q ≤C j ∀ j ∈V, ∀i ∈ Γ
−(j) (7.1)

∑
i∈A(j)

p j,qx j,q

Mq
+

Q

∑
q=1

p j,qx j,q ≤C j ∀ j ∈V, ∀q = 1, · · · ,Q (7.2)

Q

∑
q=1

x j,q = 1 ∀ j ∈V (7.3)

x j,q ∈ {0,1} ∀ j ∈V, ∀q = 1, · · · ,Q (7.4)

As for the refined HLP algorithm, Constraints 7.1 and 7.2 represent the precedence con-
straints between the tasks and the constraints of partial load on each type of resource for each
task. Constraint 7.3 ensure that a task is entirely executed and Constraints 7.4 are the integrity
constraints, making sure that a task is executed on only one type of resources.

As for HLP and refined HLP, the integrity constraint is relaxed in order to have a linear
program that can be solved optimally in polynomial time. The relaxed linear program, denoted
by (LPq), is as follows:

minimize λ =Cend subject to

Ci +
Q

∑
q=1

p j,qx j,q ≤C j ∀ j ∈V, ∀i ∈ Γ
−(j) (7.5)

∑
i∈A(j)

p j,qx j,q

Mq
+

Q

∑
q=1

p j,qx j,q ≤C j ∀ j ∈V, ∀q = 1, · · · ,Q (7.6)

Q

∑
q=1

x j,q = 1 ∀ j ∈V (7.7)

x j,q ∈ [0,1] ∀ j ∈V, ∀q = 1, · · · ,Q (7.8)

7.2 Rounding and Scheduling Methods
We describe in this section the rounding policy, the ranking function and the variant of List
Scheduling used by the algorithm.

We denote by xR
j,q the assignment variables given by the optimal solution of (LPq). These

variables have possible fractional values between 0 and 1, allowing a task to be fractionally
executed on several types of processors. Since our model does not allow preemption of tasks,
it is required to round the variables xR

j,q to either 0 or 1 to have each task executed by exactly
one type of processor.

The rounding method proceeds in two steps. We first determine the type of resource on
which each task Tj is mostly assigned to and then we set the corresponding assignment variable
to 1 and every other variables to 0. The computation is as follows:

32

1. r j = argmax
q=1,··· ,Q

{xR
j,q} ∀ j ∈V

2. x j,q =

{
1 if q = r j
0 otherwise ∀ j ∈V, ∀q = 1, · · · ,Q

In case of ties during the computation of r j, we give priority to the resource type with the
smallest processing time p j,q.

Once the assignment variables have been rounded, the rank of each task is computed as
follows:

Rank(Tj) =
Q

∑
q=1

p j,qx j,q + max
i∈Γ+(j)

{Rank(Ti)}

Before scheduling the tasks, the list of tasks T is split into Q sublists corresponding to the
tasks to be scheduled on processors of the same resource type. The schedule is then built by
running Q parallel List Scheduling algorithms as described in Section 6.2.

The algorithm is then as follows:

1. Solve (LPq) to have the fractional assignment variables xR
j,q

2. Round the variables xR
j,q to integral values 0 or 1

3. Compute the rank of each task Tj

4. Split the list T in Q lists Tq, ∀q = 1, · · · ,Q, wrt. the assignment x j,q and sort the lists by
decreasing rank of the tasks

5. Build a feasible schedule by running Q List Scheduling algorithms in parallel, one for
each sublist Tq, taking into account the precedence relations of the tasks

7.3 Analysis
In this section, we analyze the structure of the schedule produced by the algorithm and show
that the approximation ratio of this algorithm is at most Q(Q+1). The analysis of the algorithm
and the structure of the schedule is similar to the one of Kedad-Sidhoum et al. [10].

Theorem 7.3.1 The approximation ratio of the algorithm is at most Q(Q+1).

Proof:
We denote by Wq, ∀q = 1, · · · ,Q, the total work load on all processors of type q in the schedule.
We also denote by CR

max, W R
q and LR the objective value, the total work load on all processors

of type q and the length of the longest path in the fractional optimal solution of (LPq), respec-
tively. Finally, we define by C∗max the optimal makespan of the scheduling problem with integral
assignment of tasks to processors.

We have the following inequalities:

LR ≤CR
max ≤C∗max (7.9)

W R
q

Mq
≤CR

max ≤C∗max ∀q = 1, · · · ,Q (7.10)

To analyze the structure of the schedule, we partition into two disjoint subsets of intervals
TCP and TW the time interval of the schedule T = [0,Cmax] as follows:{

TCP = {t ∈T | at least one processor of each type is idle at time t}
TW = {T \TCP}

We then can divide the set TW into Q possibly non-disjoint subsets defined as:

Tq = {t ∈TW | all processors of type q are busy at time t} ,∀q = 1, · · · ,Q
Notice that there are Q+ 1 subsets Ti, with i = CP,1, · · · ,Q. We define the length |Ti| to

be the number of unitary time slots in Ti.
Clearly we have the following inequalities:

Cmax = |T | ≤ |TCP|+
Q

∑
q=1
|Tq|

In the following, we will bound above by QC∗max each subset Ti.

Due to the rounding policy, we know that if x j,q = 1 then xR
j,q ≥ 1

Q . We then have:

x j,q ≤ QxR
j,q ∀ j ∈V, ∀q = 1, · · · ,Q (7.11)

Consider the subset TCP. There is a directed path P of tasks being executed during any
time slot in TCP. The construction of P is the same as described by Kedad-Sidhoum et al. in
their analysis. Since the directed path P covers every time slot in TCP, the length of TCP is
smaller than the length of P and the length of P in the fractional optimal solution of (LPq),
noted PR, is smaller than LR.

Thus, using the inequalities (7.9) and (7.11), we have the following bounds:

|TCP| ≤ |P| ≤ ∑
j∈P

Q

∑
q=1

p j,qx j,q ≤ Q ∑
j∈P

Q

∑
q=1

p j,qxR
j,q ≤ QLR ≤ QC∗max

Consider now the subset Tq, with q = 1, · · · ,Q. At each time slot of Tq all processors of
type q are busy. Using the inequalities (7.10) and (7.11), we have the following bounds:

|Tq| ≤
Wq

Mq
≤ 1

Mq
∑

x j,q=1
p j,q ≤

Q
Mq

∑
j∈V

p j,qxR
j,q ≤

QW R
q

Mq
≤ QC∗max

Thus, by combining the calculated bounds we have the inequality:

Cmax = |T | ≤ |TCP|+
Q

∑
q=1
|Tq| ≤ Q(Q+1)C∗max

Hence, Theorem 7.3.1 follows. 2

Using the worst case example proposed in Section 6.3 with Q = 2, the following corollary
follows.

Corollary 7.3.2 The algorithm has a tight approximation ratio of Q(Q+1).

34

8
Experiments

In this chapter, we use 6 parallel applications of linear albegra to compare the schedules pro-
duced by HEFT, HLP and the refined HLP algorithms presented in the previous chapters. We
describe the instance inputs of the algorithms, the environment and analyze the results of the
experiments.

8.1 Input Data
Each of the three algorithms take as input an application, composed of a DAG of precedence
between the tasks and the processing times on CPU and on GPU for each task, as well as the
number of CPUs and the number of GPUs that compose the parallel platform on which the
application is to be scheduled.

The applications used for our experiments are 6 applications from Chameleon1, a dense
linear algebra software which is part of the MORSE2 project. The applications were run on a
parallel platform and the traces of execution were analyzed to extract the list of generated tasks
with their processing times on CPU and on GPU and their predecessors.

The 6 applications, named sgetrf nopiv, sgetrs nopiv, sposv, spotrs, spotri and spotrs, are
composed of multiple sequential basic tasks of linear algebra such as SYRK (symetric rank
update), GEMM (general matrix-matrix multiply), TRSM (triangular matrix equation solver)
and DPOTRF (computes the Cholesky factorization). Different tiling of the matrices have been
used, varying the number of sub-matrices denoted by nb blocs and the size of the sub-matrices
denoted by bloc size. The different values of nb blocs were 10, 20, 50 and 100 and the different
values of bloc size were 64, 128, 320, 512, 768 and 960, for a total of 24 configurations for
each application.

Table 8.1 shows the total number of tasks for each application and each value of nb blocs.
Notice that the bloc size does not impact the number of tasks.

From the traces, a file have been created for each combination of application, regrouping
on each line the index of a task, its processing time on CPU, its processing time on GPU and
the list of indexes of its predecessors. Each combination of application consists of the pair
(nb blocs,bloc size), for a total of 24 files per application.

1https://project.inria.fr/chameleon/
2Marices Over Runime Systems at Exascale

Nb blocs sgetrf nopiv sgetrs nopiv sposv spotrf spotri spotrs
10 385 110 330 220 660 110
20 2870 420 1960 1540 4620 420
50 42925 2550 24650 22100 66300 2550

100 338500 10100 181800 171700 515100 10100

Table 8.1: Total number of task of the application in function of the number of blocs

For the input number of CPUs and GPUs, due to the gap on the number of tasks between
20 and 50 blocs, we determined two different sets of pairs (number CPU, number GPU). For
the nb blocs values 10 and 20, we used 64, 128, 256 and 512 CPUs with 8, 16 and 32 GPUs
for a total of 12 machine configurations. For the nb blocs values 50 and 100, we used 2048,
8192, 16384 and 32768 CPUs with 256, 512, 1024 and 2048 GPUs for a total of 16 machine
configurations.

8.2 Experiment Environment and Algorithms
The three algorithms are implemented in Python, version 2.7.6, and the linear program solver
used is the glpsol command-line solver, version 4.52, of the GLPK package (GNU Linear
Programming Kit).

All the experiments were performed using the Froggy platform of the CIMENT infrastruc-
ture (https://ciment.ujf-grenoble.fr), which is supported by the Rhône-Alpes region (GRANT
CPER07 13 CIRA) and the Equip@Meso project (reference ANR-10-EQPX-29-01) of the pro-
gramme Investissements d’Avenir supervised by the Agence Nationale pour la Recherche.

Except from HEFT, HLP and refined HLP, a variant of the HLP algorithm have been im-
plemented, denoted by HLP ranked, using the linear program of HLP and the ranking and
scheduling methods of the refined HLP algorithm.

For the nb blocs values 10 and 20, each of the 6 applications with each of the 6 bloc size
values and the 12 machine configurations were used as inputs to test the algorithm. The re-
sulting makespan of HEFT, HLP, HLP ranked and refined HLP were stored, as well as the
objective values of the linear programs (LP1) and (LP2).

Each combination of application and machine configuration have been run only once since
the algorithms, as well as glpsol, are deterministic.

Due to the growing size and complexity of the linear programs used by these algorithms,
the experiments with nb blocs = 100 for all algorithms, as well as nb blocs = 50 for the refined
HLP algorithm, are still running and will be analyzed in a future work.

8.3 Results
In this section, we analyse the results of the experiments. More precisely, we compare the
behavior of the HLP algorithm to the theoretical approximation ratio of 6 and compare the
performances of HEFT, HLP, HLP ranked and refined HLP on the described instances.

36

8.3.1 Analysis of HLP

We study here the ratio between the mean of the makespan of HLP (Cmax) and the mean of
the lower bound provided by the fractional optimal solution of (LP1) (λ) per application, in
function of the number of blocs tiling the matrix. The means are computed over the 72 instances
of each application for nb blocs = 10 or 20 and over the 96 instances for nb blocs = 50.

Figure 8.1 shows the ratio mean(Cmax)
mean(λ) of each application in function of nb blocs. We can

see that, on average, the ratio does not exceed 1.4.
Looking more closely at the computed values we notice that, over all instances and all

applications, the average of the ratios is near 1.1, meaning that the makespan of HLP is on
average 10% away from the optimal theoretical makespan for these instances. Moreover, the
maximal ratio obtained from these instances is close to 1.62 and is achieved with the application
sgetrf nopiv with nb blocs = 20, a bloc size of 512, 64 CPUs and 8 GPUs.

1.0

1.1

1.2

1.3

10 20 50
Nb_bloc

R
at

io

Application

sgetrf_nopiv

sgetrs_nopiv

sposv

spotrf

spotri

spotrs

Figure 8.1: Ratio mean(Cmax)
mean(λ) in function of nb blocs for the HLP algorithm

An interesting observation, regarding the values of x j for the optimal solutions of (LP1),
is that the proportion of fractional values over the total number of tasks is on average smaller
than 4% for the 576 instances. Moreover, only 7 instances of the spotri application have more

than 10% of fractional variables, while the maximum is 16% for the application spotri with
nb blocs = 50, a bloc size of 960, 16384 CPUs and 256 GPUs.

8.3.2 Comparison of the LP-based Algorithms
We study now the performances of the algorithms HLP, HLP ranked and refined HLP by com-
paring the average of their makespans over all the instances for the 6 applications. The means
are computed over the 144 instances corresponding to nb blocs = 10 and 20 for each applica-
tion.

Figure 8.2 shows the mean makespans of each application for each of the 3 algorithms under
study. We can see that the HLP algorithm performs, on average, worse than the two others and
that the algorithm HLP ranked and refined HLP are quite similiar in terms of mean makespan.

For 864 different instances (6 applications and 144 configurations per application), the HLP
algorithm strictly outperforms HLP ranked in only 2 cases and has the same makespan in 325
cases. HLP strictly outperforms refined HLP in 273 cases and has the same makespan in 145
cases. Finally, the HLP ranked algorithm outperforms refined HLP in 422 cases and has the
same makespan in 193 cases over the 864 instances.

Notice that the overall difference of performances between the 3 algorithm is on average
smaller than 5%.

8.3.3 Comparison with HEFT
In the previous section we observed that HLP was outperformed by both HLP ranked and
refined HLP in terms of average makespan over all the instances. Since the running time of
refined HLP, as well as the amount of memory it requires, is much greater than for HLP ranked,
we decided to compare the performances of HEFT to HLP ranked.

To do so, we compared the average makespans over the 240 instances for each of the 6
applications. The means are computed over the 144 instances corresponding to nb blocs = 10
and 20 and the 96 instances corresponding to nb blocs = 50.

Figure 8.3 shows the mean makespans of each application for the algorithm HEFT and
HLP ranked. We can see that HEFT outperforms the other algorithm on the average of the
makespans. Looking more in details at the ratio between the makespan of HLP ranked and the
makespan of HEFT we notice that, on average, the makespans of HLP ranked are less than 4%
greater than the makespans of HEFT, considering all applications with all instances.

The instance with the highest ratio between the two makespans is achieved with the ap-
plication sgetrf nopiv, with nb blocs = 20, a bloc size of 960, 64 CPUs and 8 GPUs, with
HLP refined having a makespan near to 28% worse than HEFT. The instance with the small-
est ratio is for the application spotri, with nb blocs = 20, a bloc size of 512, 256 CPUs and 8
GPUs, with HLP refined having a makespan near to 30% better than HEFT.

To conclude, the 3 LP-based algorithms have relative good performance compared to their
approximation ratio for these 6 applications, with the different instances defined. Considering
the average of the makespans for the applications, HEFT is the best algorithm in practice but,
contrary to the 3 other algorithms, there is no constant performance guarantee on its approxi-
mation ratio.

38

sgetrf_nopiv

sgetrs_nopiv

sposv

spotrf

spotri

spotrs

0 50 100 150
Makespan

A
pp

lic
at

io
n Algorithm

HLP

HLP_ranked

refined_HLP

Figure 8.2: Mean makespan of HLP, HLP ranked and refined HLP for the 6 applications

sgetrf_nopiv

sgetrs_nopiv

sposv

spotrf

spotri

spotrs

0 100 200
Makespan

A
pp

lic
at

io
n Algorithm

HLP_ranked

HEFT

Figure 8.3: Mean makespan of HLP ranked and HEFT for the 6 applications

40

9
Conclusion

In this work, we studied the problem of scheduling sequential tasks linked by precedence con-
straints on heterogeneous multi-core architectures composed of identical CPUs and GPUs in
order to minimize the makespan. We focused on two existing generic algorithms, namely
HEFT and HLP, for addressing this problem and proposed some refinements of the second one
in order to improve the quality of produced schedules.

We improved the known lower bound for HEFT by giving a better Ω(m) counter-example
and we gave a worst-case instance for HLP showing that the approximation ratio of the algo-
rithm was tight at 6.

Then, we proposed new constraints for the linear programs used in the assignment step of
HLP, as well as a new scheduling method based on the ranking function of HEFT, in order
to give a better lower bound on the optimal makespan and improve the produced schedule.
However, the approximation ratio of the new algorithm remains at 6. We also provide a proof of
its tightness. This means that the algorithm can only be improved by modifying the assignment
method since the provided worst-case example can be adapted for several scheduling policies.

We also presented a new testbed constructed using a representative benchmark of 6 appli-
cations of linear algebra routines, issued from the library Chameleon, in order to evaluate the
performances of the algorithms in a realistic context. For the experiments, we defined a variant
of HLP using the scheduling method based on the ranking of the tasks in addition to the three
other algorithms under study. Though the computed approximation ratio of HLP did not exceed
1.62, it appeared that HLP was outperformed by the variant and by the refined HLP algorithm.
Both proposed algorithms lead to an improvement of the makespans close to 5% on average.
Moreover, the comparison of HEFT and the variant of HLP showed that HEFT was performing
better than the variant with a small improvement in average (close to 4%). However, HEFT
does not provide any worst-case performance guarantee on the produced schedules.

Finally, we proposed a tight Q(Q+1)-approximation algorithm for the problem of schedul-
ing dependent tasks on Q different types of resources. This is an important step towards the
increasing degree of heterogeneity of the future parallel platforms since it is the first approxi-
mation algorithm taking into account precedence constraints for this kind of architectures with
more than two types of resources.

Based on the results of this work, we can conclude that the assignment step is a crucial
issue for the performances of scheduling algorithms for hybrid and more general heterogeneous
platforms. Thus, it is important to further improve this assignment step both in theory and
practice. However, as we observed during the experiment process, the resolution of the linear

programs for deciding the assignment of the tasks is not appropriate for practical applications
since it significantly increases the execution time, as well as the memory used by the linear
program-based algorithms. Thus, a promising idea could be the replacement of the linear
programs by a set of rules, like the one used to solve the on-line version of the problem [5], in
order to simplify and reduce the execution time of the assignment step as well as improving the
approximation ratio.

Another interesting mid-term direction is to deal with the increasing heterogeneity of the
platforms, such as the utilization of specific nodes for data analytics or for I/O operations, on
the road to the exascale. Here, it is critical to develop efficient greedy algorithms that are
adapted to the increasing number of nodes and the complexity of such platforms, as well as to
the ever-growing size of the applications and the data transfers.

42

Bibliography

[1] H. Arabnejad and J. G. Barbosa. List scheduling algorithm for heterogeneous systems
by an optimistic cost table. IEEE Transactions on Parallel and Distributed Systems,
25(3):682–694, March 2014.

[2] Yossi Azar and Leah Epstein. On-line scheduling with precedence constraints. Discrete
Applied Mathematics, 119(1-2):169 – 180, 2002.

[3] R. Bleuse, S. Kedad-Sidhoum, F. Monna, G. Mounié, and D. Trystram. Scheduling in-
dependent tasks on multi-cores with GPU accelerators. Concurrency and Computation:
Practice and Experience, 27(6):1625–1638, 2015.

[4] Bo Chen and Arjen P.A. Vestjens. Scheduling on identical machines: How good is lpt in
an on-line setting? Operations Research Letters, 21(4):165 – 169, 1997.

[5] Lin Chen, Deshi Ye, and Guochuan Zhang. Online scheduling of mixed cpu-gpu jobs.
International Journal of Foundations of Computer Science, 25(06):745–761, 2014.

[6] Jan Clemens Gehrke, Klaus Jansen, Stefan E. J. Kraft, and Jakob Schikowski. A ptas
for scheduling unrelated machines of few different types. In SOFSEM 2016: Theory
and Practice of Computer Science: 42nd International Conference on Current Trends in
Theory and Practice of Computer Science, pages 290–301, Berlin, Heidelberg, 2016.

[7] R. L. Graham. Bounds for certain multiprocessing anomalies. Bell System Technical
Journal, 45(9):1563–1581, 1966.

[8] R. L. Graham. Bounds on multiprocessing timing anomalies. SIAM Journal On Applied
Mathematics, 17(2):416–429, 1969.

[9] Dorit S. Hochbaum and David B. Shmoys. Using dual approximation algorithms for
scheduling problems theoretical and practical results. J. ACM, 34(1):144–162, January
1987.

[10] S. Kedad-Sidhoum, F. Monna, and D. Trystram. Scheduling Tasks with Precedence Con-
straints on Hybrid Multi-core Machines. In IPDPSW 2015 - IEEE International Parallel
and Distributed Processing Symposium Workshop, pages 27–33, Hyderabad, India, May
2015.

[11] Safia Kedad-Sidhoum, Fernando Machado Mendonca, Florence Monna, Gregory Mounie,
and Denis Trystram. Fast biological sequence comparison on hybrid platforms. In 43rd
International Conference on Parallel Processing, ICPP 2014, Minneapolis, MN, USA,
September 9-12, 2014, pages 501–509, 2014.

[12] Minhaj Ahmad Khan. Scheduling for heterogeneous systems using constrained critical
paths. Parallel Comput., 38(4-5):175–193, April 2012.

[13] J. K. Lenstra, D. B. Shmoys, and É. Tardos. Approximation algorithms for scheduling
unrelated parallel machines. Math. Program., 46(3):259–271, February 1990.

[14] Jane W. Liu and C. L. Liu. Performance analysis of multiprocessor systems containing
functionally dedicated processors. Acta Inf., 10(1):95–104, March 1978.

[15] R. Sakellariou and H. Zhao. A hybrid heuristic for dag scheduling on heterogeneous
systems. In Parallel and Distributed Processing Symposium, 2004. Proceedings. 18th
International, April 2004.

[16] Evgeny V. Shchepin and Nodari Vakhania. An optimal rounding gives a better approxi-
mation for scheduling unrelated machines. Operations Research Letters, 33(2):127–133,
2005.

[17] D. B. Shmoys, J. Wein, and D. P. Williamson. Scheduling parallel machines on-line.
In Foundations of Computer Science, 1991. Proceedings., 32nd Annual Symposium on,
pages 131–140, Oct 1991.

[18] Ola Svensson. Hardness of precedence constrained scheduling on identical machines.
SIAM J. Comput., 40(5):1258–1274, September 2011.

[19] H. Topcuoglu, S. Hariri, and Min-You Wu. Task scheduling algorithms for heteroge-
neous processors. In Heterogeneous Computing Workshop, 1999. (HCW ’99) Proceed-
ings. Eighth, pages 3–14, 1999.

44

A
Computations from Chapter 6

In the following, we will check that every constraint of (LP2), presented in Section 6.1, is sat-
isfied with the variables x j and C j by studying the types of tasks, since every task of the same
type has the same constraints and values of variables.

The validity of the constraints for Tstart is straightforward since its processing time is always
0 and Cstart = 0. The last constraint is easily checked for every task so the three first constraints
remains to be checked.

For the task TA and tasks TJ1:
Since tasks of type A or J1 has no predecessors, except from Tstart with processing time 0, the
three first constraints are equivalent and then:

Cstart + pA ≤CA

0+(l +2)m≤ (l +2)m

Cstart + pJ1xJ1 + pJ1(1− xJ1)≤CJ1

0+(2m−1)
1
2
+

1
2
≤ m

m≤ m

The two inequalities are true. Thus, the constraints are satisfied for the task types A and J1.

For the tasks TJi , i≥ 2:
Due to the precedence relations, the constraints associated with the tasks TJi uses the variable
Ci−1, so they rely on the constraints associated with TJi−1 , which rely on the constraints associ-
ated with TJi−2 and so on. Thus, in order to check the constraints associated with the tasks TJi it
is required to check every constraint with lower values of i.

We will show by an induction proof on i that the three constraints associated with the tasks

TJi are satisfied. To do so, we define the two sums:

SCPU
i = ∑

a∈A(i)

paxa

m
∀i = 1, · · · , l

SGPU
i = ∑

a∈A(i)

pa(1− xa)

m
∀i = 1, · · · , l

The set of ancestors A(i) of a task TJi contains all tasks of type J1 to Ji−1.
If i is odd, there are i−1

2 types Ja, a odd, and i−1
2 types Ja, a even.

If i is even, there are i
2 types Ja, a odd, and i−2

2 types Ja, a even.

The first sum can be simplified to:

SCPU
i =

i−1
2

(2m+1)(2m−1)1
2

m
+

i−1
2

(2m+1)(1
2 − ε)

m
if i is odd

=
i−1

2
(
4m2−1

2m
+

m+ 1
2 − ε(2m+1)

m
)

=
i−1

2
(2m+1− ε(2+

1
m
))

= (i−1)m+
i−1

2
− ε(i−1+

i−1
2m

)

SCPU
i =

i
2
(2m+1)(2m−1)1

2
m

+
i−2

2
(2m+1)(1

2 − ε)

m
if i is even

=
i
2
(2m− 1

2m
)+

i−2
2

(1+
1

2m
− ε(2+

1
m
))

= im− 1
2m

+
i−2

2
− ε(i−2+

i−2
2m

)

And with the same computation applied for the second sum:

SGPU
i = (i−1)m+

i−1
2

+ ε((2i−2)m− i−1
2m

) if i is odd

SGPU
i = (i−2)m+

i
2
+

1
2m

+ ε((2i−4)m− i−2
2m

) if i is even

Notice that Constraints 6.2 and 6.3 can be rewriten, when task TJi is considered, as:

SCPU
j + pJi(xJi)+ pJi(1− xJi)≤CJi

SGPU
j + pJi(xJi)+ pJi(1− xJi)≤CJi

46

For the base case i = 2:

CJ1 + pJ2xJ2 + pJ2(1− xJ2)≤CJ2

m+
1
2
− ε +(2m−1)(

1
2
+ ε)≤ 3m− 1

2m
+ ε(2m−2)

2m+ ε(2m−2)≤ 3m− 1
2m

+ ε(2m−2)

0≤ m− 1
2m

SCPU
2 + pJ2xJ2 + pJ2(1− xJ2)≤CJ2

2m− 1
2m

+
1
2
− ε +(2m−1)(

1
2
+ ε)≤ 3m− 1

2m
+ ε(2m−2)

3m− 1
2m

+ ε(2m−2)≤ 3m− 1
2m

+ ε(2m−2)

0≤ 0

SGPU
2 + pJ2xJ2 + pJ2(1− xJ2)≤CJ2

1+
1

2m
+

1
2
− ε +(2m−1)(

1
2
+ ε)≤ 3m− 1

2m
+ ε(2m−2)

m+1+
1

2m
+ ε(2m−2)≤ 3m− 1

2m
+ ε(2m−2)

0≤ 2m−1− 1
m

The three inequalities are true. Thus, the constraints are satisfied for the type J2.

For the general case i, assume the constraints are satisfied from 2 to i−1. We need to check
that the constraints are also satisfied for i.
If i is odd:

CJi−1 + pJixJi + pJi(1− xJi)≤CJi

im+
i−3

2
− 1

2m
+(i−1)ε(m−1)+m≤ (i+1)m+

i−3
2
− 1

2m
+ ε(i−1)(m−1)

(i+1)m+
i−3

2
− 1

2m
+(i−1)ε(m−1)≤ (i+1)m+

i−3
2
− 1

2m
+(i−1)ε(m−1)

0≤ 0

SCPU
i + pJixJi + pJi(1− xJi)≤CJi

(i−1)m+
i−1

2
− ε(i−1+

i−1
2m

)+m≤ (i+1)m+
i−3

2
− 1

2m
+ ε(i−1)(m−1)

im+
i−1

2
− ε(i−1+

i−1
2

)≤ (i+1)m+
i−3

2
− 1

2m
+ ε(i−1)(m−1)

0≤ m−1+ ε(i−1)(m+
i−1
2m

)

SGPU
i + pJixJi + pJi(1− xJi)≤CJi

(i−1)m+
i−1

2
+ ε((2i−2)m− i−1

2m
)+m≤ (i+1)m+

i−3
2
− 1

2m
+ ε(i−1)(m−1)

im+
i−1

2
+ ε((2i−2)m− i−1

2m
)≤ (i+1)m+

i−3
2
− 1

2m
+ ε(i−1)(m−1)

0≤ m−1+ ε(i−1)(−m−1+
i−1

m
)

The three inequalities are true. Thus, the constraints are satisfied for the type Ji, where i ≥ 3
and odd.
If i is even:

CJi−1 + pJixJi + pJi(1− xJi)≤CJi

im+
i−4

2
− 1

2m
+ ε(i−2)(m−1)+m+2ε(m−2)≤ (i+1)m+

i−2
2
− 1

2m
+ iε(m−1)

(i+1)m+
i−4

2
− 1

2m
+ iε(m−1)≤ (i+1)m+

i−2
2
− 1

2m
+ iε(m−1)

0≤ 1

SCPU
i + pJixJi + pJi(1− xJi)≤CJi

im− 1
2m

+
i−2

2
− ε(i−2+

i−2
2

)+m+ ε(2m−2)≤ (i+1)m+
i−2

2
− 1

2m
+ iε(m−1)

(i+1)m+
i−2

2
− 1

2m
+ ε(2m− i− i−2

2
)≤ (i+1)m+

i−2
2
− 1

2m
+ ε(mi− i)

0≤ ε(m(i−2)+
i−2

2
)

SGPU
i + pJixJi + pJi(1− cJi) = (i−2)m+

i
2
+

1
2m

+ ε((2i−4)m− i−2
2m

)+m+ ε(2m−2)

= (i−1)m+
i
2
+

1
2m

+ ε((2i−2)m−2− i−2
2m

)

So we have for the third constraint:

SGPU
i + pJixJi + pJi(1− xJi)≤CJi

(i−1)m+
i
2
+

1
2m

+ ε((2i−2)m−2− i−2
2m

)≤ (i+1)m+
i−2

2
− 1

2m
+ ε(mi− i)

0≤ 2m−1− 1
m
+ ε((m+1)(2− i)+

i−2
2m

)

The three inequalities are true. Thus, the constraints are satisfied for the type Ji, where i ≥ 3
and even.
The constraints are then satisfied for every task of type J2 to Jl .

Finally, for the task Tend , which is a successor of the tasks of type A and Jl , Constraint 6.1
with the task TA is:

CA ≤Cend

(l +2)m≤ (l +2)m
0≤ 0

48

For the tasks TJl , with l odd:

CJl ≤Cend

(l +1)m+
l−3

2
− 1

2m
+(l−1)ε(m−1)≤ (l +2)m

0≤ m− l−3
2
− ε(l−1)(m−1)

If l is even:

CJl ≤Cend

(l +1)m+
l−2

2
− 1

2m
+ lε(m−1)≤ (l +2)m

0≤ m− l−2
2
− ε(m−1)l

The inequalities are true since l ≤ m. Thus, Constraint 6.1 is satisfied. For the two re-
maning constraints, we can see the task Tend as a fictitious task TJl+1 with no processing time.
Constraints 6.2Â and 6.3 reduce then to the following:

SCPU
l+1 ≤Cend

SGPU
l+1 +

pA

m
≤Cend

And then for Constraint 6.2 if l is odd:

SCPU
l+1 ≤Cend

(l +1)m+
l−1

2
− 1

2m
− ε(l−1+

l−1
2m

)≤ (l +2)m

l−1
2
− 1

2m
− ε(l−1+

l−1
2m

)≤ m

If l is even:

SCPU
l+1 ≤Cend

lm+
l
2
− ε(l +

l
2
)≤ (l +2)m

l
2
− ε(l +

l
2
)≤ 2m

The two inequalities are true since l ≤ m. Thus, Constraint 6.2 is satisfied.
For Constraint 6.3, if l is odd:

SGPU
l+1 +

pA

m
≤Cend

(l−1)m+
l +1

2
+

1
2m

+ ε((2l−2)m− l−1
2m

)+
(l +2)m

m
≤ (l +2)m

3l
2
+

5
2
+

1
2m

+ ε((2l−2)m− l−1
2m

)≤ 3m

If l is even:

SGPU
l+1 +

pA

m
≤Cend

lm+
l
2
+ ε(2lm− l

2m
)+

(l +2)m
m

≤ (l +2)m

3l
2
+2+ ε(2lm− l

2m
)≤ 2m

The two inequalities are true since l ≤ m. Thus, Constraint 6.3 is satisfied.

We conclude that the set of variables x j and C j is effectively an optimal solution of (LP2),
with λ = (l +2)m. 2

50

