Gestion Efficace des Ressources dans les Plates-formes Hétérogènes Efficient Management of Resources in Heterogeneous Platforms

Clément Mommessin

Supervisors: Denis Trystram and Giorgio Lucarelli

Univ. Grenoble Alpes

Dec. 11th, 2020

Grenoble INP

IT World Overview

Evolution of Device Connections

Total number of device connections (incl. Non-IoT)

20.0Bn in 2019- expected to grow 13% to 41.2Bn in 2025

Accelerator Count in HPC Platforms

Multiple ever growing numbers

- Digital and connected devices
- Users, computing requests, data generated
- (Heterogeneous) resources

Emergence of optimisation challenges

Need for better resource management systems

Contributions Overview

 \rightarrow Focus on optimisation problems for distributed and parallel platforms with heterogeneous resources

High Performance Computing (HPC)

Scheduling on two types of resources

- Theoretical analysis
- Performance evaluation

Edge Computing

Qarnot Computing: a case study

- Simulator extensions
- Platform simulation
- Temperature prediction method
- Scheduling problem formulation

From Boxes and Trucks...

... To Tasks and Machines

Scheduling on Two Types of Resources

A Scheduling Problem

Scheduling parallel applications on hybrid multi-core machines

- A parallel machine with 2 types of processors
 - \blacktriangleright *m* identical CPUs
 - ▶ $k \le m$ identical GPUs
- An application composed of n sequential tasks
 - Known processing times on CPU $(\overline{p_j})$ and on GPU (p_j)
 - Known at time 0 (off-line setting)
 - Precedence relations expressed as a Directed Acyclic Graph

 \Rightarrow Objective: minimise the maximum completion time $C_{\rm max}$ (known as makespan)

Informal Definition of Scheduling

Two questions

The problem is to answer the two following questions for each task of the application:

- Where? Determine which resource will execute the task
- When? Determine the execution interval of the task

 \rightarrow For hybrid machines the 'where?' is crucial – a wrong decision may be very costly

 \Rightarrow We are interested in designing generic scheduling algorithms with performance garantees in the worst case.

"How much a solution can be away from the optimal?"

Definition: Approximation ratio (for min. problems)

algorithm solution for instance I

 $\max_{I \in \text{problem instances}} \text{ optimal solution for instance I}$

Scheduling Algorithms

HEFT: Heterogeneous Earliest Finish Time [THW99]

- **Tasks prioritisation**: Ranking from precedence constraints and processing times
- 2 Tasks scheduling: Earliest Finish Time policy

HLP: Heterogeneous Linear Program [KSMT15]

- **1** Allocation: Relaxed linear program + rounding technique
- 2 Scheduling: Earliest Starting Time policy
 - (= List Scheduling [Gra69])

HLP with Ordered List Scheduling (OLS) policy

- Allocation: Same as HLP-EST (linear program + rounding)
- **Scheduling**: HEFT ranking + List Scheduling (OLS policy)

Theoretical Results

- ► HEFT: Approximation ratio at least ^{m+k}/_{k²}(1 - ¹/_{e^k}), with k² ≤ m (no constant performance guarantee)
- HLP-EST: Approximation ratio at least 6 O(¹/_m) (Approximation ratio at most 6 [KSMT15])
- HLP-OLS: Same tight approximation ratio as HLP-EST

Extensions to $q \ge 2$ types of resources

- Linear program HLP extended to qHLP (+ rounding)
- Algorithms HLP-EST and HLP-OLS extended
- (Tight) approximation ratio of q(q+1).

Experiments: 2 Resource Types Off-line

On-line setting

- Tasks arrive in any order respecting precedence constraints
- Processing times are only known when the task arrives

 \rightarrow An algorithm must take an irrevocable scheduling decision upon arrival of a task

Definition: Competitive ratio (for min. problems)

algorithm solution for instance I

 $\max_{I \in \mathsf{problem instances}} \text{ optimal off-line solution for instance I}$

ER-LS (Enhanced Rules - List Scheduling)

Allocation:

▶ Rule 1: If $\overline{p_j} > \underline{\tau'} + \underline{p_j}$ then $T_j \to \text{GPU}$ ($\underline{\tau'}$: first time a GPU can start T_j) ▶ Rule 2: If $\overline{\overline{m}} / \sqrt{\overline{m}} < \pi / \sqrt{\overline{h}}$ then $T_j \to \text{CPU eld}$

▶ Rule 2: If $\overline{p_j}/\sqrt{m} \le \underline{p_j}/\sqrt{k}$ then $T_j \to \text{CPU}$ else $T_j \to \text{GPU}$

2 Scheduling: List Scheduling (EST policy)

 \rightarrow First on-line scheduling algorithm on hybrid machines to take into account precedence constraints

 \Rightarrow The competitive ratio of ER-LS is at least $\sqrt{m/k}$ and at most $4\sqrt{m/k}$

Sketch of Proof (1)

Partition the schedule into 3 interval subsets

Sketch of Proof (2)

Bound the value of C_{\max} :

$$C_{\max} \leq |Full_{CPU}| + |Full_{GPU}| + |Idle_{Both}|$$
$$\leq \frac{Load_{CPU}}{m} + \frac{Load_{GPU}}{k} + |CritPath|$$

Idea: Compare the allocation (CPU-GPU) of tasks in the optimal schedule with the allocation given by the algorithm

$$\frac{Load_{\rm CPU}}{m} + \frac{Load_{\rm GPU}}{k} \le 3\sqrt{\frac{m}{k}}C_{\rm max}^{\rm OPT} \Rightarrow C_{\rm max} \le 4\sqrt{\frac{m}{k}}C_{\rm max}^{\rm OPT}$$
$$|CritPath| \le \sqrt{\frac{m}{k}}C_{\rm max}^{\rm OPT}$$

For independent tasks [CYZ14]

- The competitive ratio of any algorithm is at least 2
- The competitive ratio of Al₅ is at most 3.85

For tasks with precedences [CMSV19]

- The competitive ratio of any algorithm is at least $\sqrt{m/k}$
- The competitive ratio of QA is at most $2\sqrt{m/k} + 1$

Edge Computing: A Case Study

Qarnot Computing

"A disruptive solution to turn IT waste heat into a viable heating solution for buildings."

The Qarnot Platform

The Qarnot Platform with Users

Several Resource Management Problems

CEPH

Case Study of Qarnot Computing

Main goals

- **1** Study the different resource management problems
- 2 Propose solutions
- 3 Test and validate them

Problem

Testing on a real platform is not conceivable

- Costly and time consuming
- Tested solutions may be difficult to (quickly) deploy
- Users will not be happy
- \rightarrow This is the production platform!

 \Rightarrow The solution is the simulation

Testing through simulation

- Fast, deterministic, in a controlled environment
- Easy to switch between solutions
- Easy to test complicated/unfeasible scenarios in production
- \rightarrow We can test whatever we want!

Batsim and SimGrid

Simulation tools for HPC platforms

- SimGrid: Large-scale parallel/distributed system simulator
- Batsim: Infrastructure simulator for job and I/O scheduling

New extensions for Edge Computing platforms

- External events injector: Replay machine failures, temperature changes, etc.
- Storage controller: Manage storage entities and data movements
- \rightarrow Merged in Batsim and PyBatsim Git projects

Network and data transfer

- Communications via the Internet
- Coarse-grain data transfers

Temperature

- Temperature-driven computing resources availabilities
- Prediction method not validated
- \rightarrow 3rd resource management problem of the platform

Proof of Concept

Main goals

- Demonstrate the simulation extensions for Edge Computing
- Test different job and data placement strategies at QNode-level

Job and data placement strategies

- Standard: Basic Qarnot scheduler
- LocalityBased: Favours re-use of data-sets
- Replicate3: Replicates data-sets on 3 QBoxes
- Replicate10: Replicates data-sets on 10 QBoxes
- ► DataOnPlace: Assumes instantaneous data transfers

Simulations of 1-week workloads from Qarnot logs

 \rightarrow 1st resource management problem of the platform

Local Scheduling

Basic settings

- Multiple machines
- A queue of local tasks
- A queue of off-loaded tasks
- Bi-objective
- \rightarrow 2nd resource management problem of the platform

Two-agent Scheduling

Problem formulation

- Identical parallel machines
- Local agent:
 - On-line non-preemptive sequential tasks with release dates (r_j)
 - Processing times known when released (p_j)
 - Objective: minimise sum flow-time (F_j)

Global agent:

- Off-line non-preemptive sequential tasks
- Known processing times
- Objective: minimise maximum completion time (C_{max})

Strong Competitive Ratio Lower Bound

Worst-case example

- One machine
- One long global task G
- One short local task L
- \rightarrow Release L right after G has started

Current Research

Task rejection

- Cope with strong lower bounds
- Give more power to the algorithm
- Allow rejection of global tasks
- \rightarrow Trade-off between number of rejections and quality of the solution

Primal-Dual approach

- Formulate Primal/Dual linear programs
- Interpret Dual variables
- **3** Design/analyse algorithm with performance guarantees

Concluding Words

 \Rightarrow Achieving an efficient management of resources in heterogeneous platforms is not that easy

High Performance Computing

Scheduling on hybrid machines

- Theoretical analysis of scheduling algorithms
- Performance evaluation

Edge Computing

Case-study of Qarnot Computing

- Platform simulation
- Study of different resource management problems in theory and practice

- Find good data to validate the temperature prediction method
- Combine temperature prediction with scheduling
- Add more features to Batsim/SimGrid
- Continue the work on the 2-agent scheduling problem

Computer Science Unplugged

International journals

- Beaumont et al., "Scheduling on Two Types of Resources: A Survey". In ACM Computing Surveys (May 2020).
- Amaris et al., "Generic Algorithms for Scheduling Applications on Heterogeneous Platforms". In CCPE (July 2018).

International conferences with proceedings

- Bauskar et al., "Investigating Placement Challenges in Edge Infrastructures through a Common Simulator". In SBAC-PAD 2020.
- Amaris et al., "Generic Algorithms for Scheduling Applications on Hybrid Multi-core Machines". In Europar 2017.
- Mommessin et al., "Automatic Data Filtering in In Situ Workflows". In Cluster 2017.

Gestion Efficace des Ressources dans les Plates-formes Hétérogènes Efficient Management of Resources in Heterogeneous Platforms

Clément Mommessin

Supervisors: Denis Trystram and Giorgio Lucarelli

Univ. Grenoble Alpes

Dec. 11th, 2020

Grenoble INP

Scheduling on Hybrid Platforms: State of Art

Setting		Off-line	On-line
Independent tasks	Lower bound Best known	$\begin{vmatrix} -\\ 1+\epsilon \end{vmatrix}$	2 3.85
Tasks with precedences	Lower bound Best known	$\begin{vmatrix} 3 \\ 3 + 2\sqrt{2} \end{vmatrix}$	$\left \begin{array}{c} \sqrt{\frac{m}{k}} \\ 2\sqrt{\frac{m}{k}} + 1 \end{array} \right.$

minimise λ subject to: (1) $C_i + \overline{p_i} x_j + p_j (1 - x_j) \le C_j$ $\forall T_i \in \mathcal{T}, T_i \in \Gamma^-(T_i)$ $\overline{p_j}x_j + p_j(1 - x_j) \le C_j$ $\forall T_i \in \mathcal{T} : \Gamma^-(T_i) = \emptyset$ (2)(3) $C_i < \lambda$ $\forall T_i \in \mathcal{T}$ $\frac{1}{m} \sum_{T_j \in \mathcal{T}} \overline{p_j} x_j \le \lambda$ (4) $\frac{1}{k} \sum_{T_j \in \mathcal{T}} \underline{p_j} (1 - x_j) \le \lambda$ (5) $x_i \in \{0, 1\}$ $\forall T_i \in \mathcal{T}$ (6) $C_i \geq 0$ (7) $\forall T_i \in \mathcal{T}$

Ranking of HEFT (unrelated resources)

$$Rank(j) = \tilde{p_j} + \max_{i \in Succ(j)} \{ Comm_{j,i} + Rank(i) \}$$

Ranking of HLP-OLS (CPU/GPU)

$$Rank(j) = \overline{p_j}x_j + \underline{p_j}(1 - x_j) + \max_{i \in Succ(j)} \{Rank(i)\}$$

qHLP

minimise λ subject to: $C_i + \sum^Q p_{j,q} x_{j,q} \le C_j$ a=1 $\sum^{Q} p_{j,q} x_{j,q} \le C_j$ a=1 $C_i \leq \lambda$ $\frac{1}{m_q} \sum_{T_i \in \mathcal{T}} p_{j,q} x_{j,q} \le \lambda$ $\sum^{Q} x_{j,q} = 1$ $\overline{a=1}$ $x_{j,q} \in \{0,1\}$ $C_i \geq 0$ $\lambda \ge 0$

$$\forall T_j \in \mathcal{T}, T_i \in \Gamma^-(T_j)$$
 (8)

$$\forall T_j \in \mathcal{T} : \Gamma^-(T_j) = \emptyset$$
 (9)

$$\forall T_j \in \mathcal{T} \tag{10}$$

 $1 \le q \le Q \tag{11}$

$$\forall T_j \in \mathcal{T} \tag{12}$$

$$\forall T_j \in \mathcal{T}, \ 1 \le q \le Q$$
 (13)

$$\forall T_j \in \mathcal{T}$$
 (14)

$$(15)_{22}$$

HEFT Lower Bound

HLP-EST/HLP-OLS Lower Bound

ER-LS Lower Bound

Performance Evaluation

Benchmark creation (by M. Amaris)

 18 instances of 5 linear algebra applications for dense matrices (Chameleon) from real traces

15 instances of a fork-join application generated "by hand"

Each instance generated with varying size of task graphs \rightarrow Between 50 and 5,000 tasks per instance

Simulation execution

- 16 machine settings with various numbers of CPUs/GPUs
- Each application instance simulated on each machine setting

 \Rightarrow 288 runs for each Chameleon applications, 240 for fork-join, for each scheduling algorithm

 \rightarrow Comparison of $\frac{makespan}{\mathrm{LP}^*} \leq \frac{makespan}{\mathrm{OPT}}$ (achieved approx. ratio)

Experiments: 2 Resource Types Off-line

Experiments: 3 Resource Types Off-line

Experiments: 2 Resource Types On-line

- SimGrid: https://github.com/simgrid/simgrid
- Batsim: https://github.com/oar-team/batsim
- SimGrid Temperature for Qarnot: https://github.com/ Mommessc/simgrid/tree/temperature-sbac-2020
- Batsim for Qarnot: https://gitlab.inria.fr/batsim/ batsim/tree/temperature-sbac-2020
- PyBatsim for Qarnot: https://gitlab.inria.fr/batsim/ pybatsim/tree/temperature-sbac-2020

Simulated qarnot Platform

Thermodynamic Formulae

Thermal energy/heat capacity:

$$Q = C \times \Delta T$$

Conductive heat transfer:

$$\frac{Q}{dt} = \frac{\Delta T}{R}$$

Energy quantity Q[J], thermal capacity $C = mc[J.K^{-1}]$, thermal resistance $R[K.W^{-1}]$, temperature difference $\Delta T[K]$, time period dt[s].

Thermal Models

Naive Iterative Approach:

$$T_{\rm rad}(t+1) = T_{\rm rad}(t) + \frac{E_{\rm gained_rad} - E_{\rm lost_rad}}{C_{\rm rad}}$$
$$T_{\rm air}(t+1) = T_{\rm air}(t) + \frac{E_{\rm lost_rad} - E_{\rm lost_air}}{C_{\rm air}}$$

Closed-form:

$$\begin{pmatrix} T_{\rm rad}(n) \\ T_{\rm air}(n) \end{pmatrix} = A^n \cdot \begin{pmatrix} T_{\rm rad}(0) \\ T_{\rm air}(0) \end{pmatrix} + S_n \cdot \begin{pmatrix} \frac{P_{\rm rad}}{C_{\rm rad}} \\ \frac{T_{\rm out}}{R_{\rm air}C_{\rm air}} \end{pmatrix}$$

Lumped Thermal Model:

$$T_{\rm rad}(t) = T_{\rm rad}(0) \cdot e^{-\alpha t} + (T_{\rm air} + P_{\rm rad} \cdot R_{\rm rad}) \cdot (1 - e^{-\alpha t})$$

where $\alpha = \frac{1}{RC} [s^{-1}]$ for the rad.

Temperature Requirements VS Power

Temperature Experiments

Primal Program

$$\min \sum_{j \in \mathcal{L}} \int_{r_j}^{\infty} \left(\frac{(t-r_j)}{p_j} + \frac{1}{2} \right) x_j(t) dt \text{ subject to:}$$

$$\begin{split} \int_{r_j}^{\infty} x_j(t) dt &\geq p_j \quad \forall j \in \mathcal{L} \cup \mathcal{G} \\ \sum_{\forall j \in \mathcal{L} \cup \mathcal{G}} x_j(t) &\leq |M| \quad \forall t \\ \int_{0}^{\infty} \left(\frac{t}{p_j} + \frac{1}{2}\right) x_j(t) dt &\leq C_{max}^G \quad \forall j \in \mathcal{G} \\ x_j(t) + x_j(t') &\leq 1 \quad \forall j \in \mathcal{G} \cup \mathcal{L}, \forall t, \forall t' \geq t + p_j \\ x_j(t) &\in \{0; 1\} \quad \forall t, \forall j \in \mathcal{L} \cup \mathcal{G} \end{split}$$

Dual Program

maximize
$$\sum_{j} p_{j} \alpha_{j} - \int_{t} M \beta_{t} dt - \sum_{j \in \mathcal{G}} C_{max}^{G} - \sum_{j \in LG} \int_{0}^{\infty} \int_{t'=t+p_{j}}^{\infty} \delta_{j,t,t'} dt' dt$$

subject to:

$$\begin{aligned} \alpha_{j} - \beta_{t} - \int_{0}^{\infty} \delta_{j,t,t'} dt' + \int_{0}^{\infty} \delta_{j,t-p_{j}-t',t'} dt' &\leq \frac{t-r_{j}}{p_{j}} + \frac{1}{2} \quad \forall j \in L, \ \forall t \\ \alpha_{j} - \beta_{t} - \int_{0}^{\infty} \delta_{j,t,t'} dt' + \int_{0}^{\infty} \delta_{j,t-p_{j}-t',t'} dt' &\leq 0 \qquad \forall j \in G, \ \forall t \\ \alpha_{j} &\geq 0 \qquad \forall j \\ \beta_{t} &\geq 0 \qquad \forall t \\ \delta_{j,t,t'} &\geq 0 \qquad \forall j, \forall t, \forall t' \end{aligned}$$

References I

- Louis-Claude Canon, Loris Marchal, Bertrand Simon, and Frédéric Vivien, Online scheduling of task graphs on heterogeneous platforms, IEEE Transactions on Parallel and Distributed Systems (2019).
- Lin Chen, Deshi Ye, and Guochuan Zhang, *Online scheduling of mixed CPU-GPU jobs*, International Journal of Foundations of Computer Science **25** (2014), no. 06, 745–761.
- Ronald. L. Graham, Bounds on multiprocessing timing anomalies, SIAM Journal On Applied Mathematics 17 (1969), no. 2, 416–429.
- Safia Kedad-Sidhoum, Florence Monna, and Denis Trystram, Scheduling tasks with precedence constraints on hybrid multi-core machines, HCW - IPDPS Workshops, 2015, pp. 27–33.

Haluk Topcuoglu, Salim Hariri, and Min-You Wu, Task scheduling algorithms for heterogeneous processors, Heterogeneous Computing Workshop (HCW), 1999, pp. 3–14.