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IT World Overview

Internet
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Evolution of Device Connections
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Accelerator Count in HPC Platforms
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Thesis Statement

Multiple ever growing numbers
I Digital and connected devices
I Users, computing requests, data generated
I (Heterogeneous) resources

Emergence of optimisation challenges
I Need for better resource management systems
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Contributions Overview
→ Focus on optimisation problems for distributed and parallel
platforms with heterogeneous resources

High Performance Computing (HPC)
Scheduling on two types of resources
I Theoretical analysis
I Performance evaluation

Edge Computing
Qarnot Computing: a case study
I Simulator extensions
I Platform simulation
I Temperature prediction method
I Scheduling problem formulation
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From Boxes and Trucks...
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...To Tasks and Machines

7 / 37



Scheduling on Two Types of
Resources
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A Scheduling Problem

Scheduling parallel applications on hybrid multi-core
machines
I A parallel machine with 2 types of processors

I m identical CPUs
I k ≤ m identical GPUs

I An application composed of n sequential tasks
I Known processing times on CPU (pj) and on GPU (pj)
I Known at time 0 (off-line setting)
I Precedence relations expressed as a Directed Acyclic

Graph

⇒ Objective: minimise the maximum completion time Cmax (known
as makespan)
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Informal Definition of Scheduling

Two questions
The problem is to answer the two following questions for each task of
the application:
I Where? – Determine which resource will execute the task
I When? – Determine the execution interval of the task

→ For hybrid machines the ’where?’ is crucial – a wrong decision
may be very costly

⇒ We are interested in designing generic scheduling algorithms
with performance garantees in the worst case.
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Worst-case Analysis

“How much a solution can be away from the optimal?”

Definition: Approximation ratio (for min. problems)

max
I∈problem instances

algorithm solution for instance I
optimal solution for instance I
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Scheduling Algorithms

HEFT: Heterogeneous Earliest Finish Time [THW99]
1 Tasks prioritisation: Ranking from precedence constraints and

processing times
2 Tasks scheduling: Earliest Finish Time policy

HLP: Heterogeneous Linear Program [KSMT15]
1 Allocation: Relaxed linear program + rounding technique
2 Scheduling: Earliest Starting Time policy

(= List Scheduling [Gra69])

HLP with Ordered List Scheduling (OLS) policy
1 Allocation: Same as HLP-EST (linear program + rounding)
2 Scheduling: HEFT ranking + List Scheduling (OLS policy)
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Theoretical Results

I HEFT: Approximation ratio at least m+k
k2

(1− 1
ek

), with k2 ≤ m
(no constant performance guarantee)

I HLP-EST: Approximation ratio at least 6−O( 1
m

)
(Approximation ratio at most 6 [KSMT15])

I HLP-OLS: Same tight approximation ratio as HLP-EST

Extensions to q ≥ 2 types of resources
I Linear program HLP extended to qHLP (+ rounding)
I Algorithms HLP-EST and HLP-OLS extended
I (Tight) approximation ratio of q(q + 1).
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Experiments: 2 Resource Types Off-line
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A More Complicated Problem

On-line setting
I Tasks arrive in any order respecting precedence constraints
I Processing times are only known when the task arrives

→ An algorithm must take an irrevocable scheduling decision upon
arrival of a task

Definition: Competitive ratio (for min. problems)

max
I∈problem instances

algorithm solution for instance I
optimal off-line solution for instance I
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On-line Algorithm

ER-LS (Enhanced Rules - List Scheduling)
1 Allocation:

I Rule 1: If pj > τ ′ + pj then Tj → GPU
(τ ′: first time a GPU can start Tj)

I Rule 2: If pj/
√
m ≤ pj/

√
k then Tj → CPU else Tj → GPU

2 Scheduling: List Scheduling (EST policy)

→ First on-line scheduling algorithm on hybrid machines to take into
account precedence constraints

⇒ The competitive ratio of ER-LS is at least
√
m/k and at most

4
√
m/k
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Sketch of Proof (1)

Partition the schedule into 3 interval subsets

CPUs

GPUs

0 Cmax

FullCPU
FullGPU

IdleBoth
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Sketch of Proof (2)

Bound the value of Cmax:

Cmax ≤ |FullCPU|+ |FullGPU|+ |IdleBoth|

≤ LoadCPU

m
+
LoadGPU

k
+ |CritPath|

Idea: Compare the allocation (CPU-GPU) of tasks in the optimal
schedule with the allocation given by the algorithm

LoadCPU

m
+
LoadGPU

k
≤ 3

√
m

k
COPT

max

|CritPath| ≤
√
m

k
COPT

max

⇒ Cmax ≤ 4

√
m

k
COPT

max
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Related Work: On-line

For independent tasks [CYZ14]
I The competitive ratio of any algorithm is at least 2
I The competitive ratio of Al5 is at most 3.85

For tasks with precedences [CMSV19]
I The competitive ratio of any algorithm is at least

√
m/k

I The competitive ratio of QA is at most 2
√
m/k + 1
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Edge Computing: A Case Study
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Qarnot Computing

“A disruptive solution to turn IT waste heat into a viable
heating solution for buildings.”
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The Qarnot Platform

QRad

CEPH

QNode

QBox

Internet
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The Qarnot Platform with Users

IoT tasks

QRad

Cloud tasks

CEPH

Heating

requests

QNode

QBox

Internet
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Several Resource Management Problems

IoT tasks

QRad

Cloud tasks

CEPH

Heating

requests

QNode

QBox

Internet

Global load balancing
of data and tasks

Thermal
management

1

Local scheduling of 
Cloud/IoT tasks2

3
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Case Study of Qarnot Computing

Main goals
1 Study the different resource management problems
2 Propose solutions
3 Test and validate them

Problem
Testing on a real platform is not conceivable
I Costly and time consuming
I Tested solutions may be difficult to (quickly) deploy
I Users will not be happy
→ This is the production platform!

⇒ The solution is the simulation
24 / 37



Simulation Rules!

Testing through simulation
I Fast, deterministic, in a controlled environment
I Easy to switch between solutions
I Easy to test complicated/unfeasible scenarios in production

→ We can test whatever we want!
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Batsim and SimGrid

Simulation tools for HPC platforms
I SimGrid: Large-scale parallel/distributed system simulator

I Batsim: Infrastructure simulator for job and I/O scheduling

New extensions for Edge Computing platforms
I External events injector: Replay machine failures,

temperature changes, etc.
I Storage controller: Manage storage entities and data

movements

→ Merged in Batsim and PyBatsim Git projects
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Simulation Difficulties

Network and data transfer
I Communications via the Internet
I Coarse-grain data transfers

Temperature
I Temperature-driven computing resources availabilities
I Prediction method not validated
→ 3rd resource management problem of the platform
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Proof of Concept

Main goals
I Demonstrate the simulation extensions for Edge Computing
I Test different job and data placement strategies at QNode-level

Job and data placement strategies
I Standard: Basic Qarnot scheduler
I LocalityBased: Favours re-use of data-sets

I Replicate3: Replicates data-sets on 3 QBoxes
I Replicate10: Replicates data-sets on 10 QBoxes

I DataOnPlace: Assumes instantaneous data transfers

Simulations of 1-week workloads from Qarnot logs

→ 1st resource management problem of the platform
28 / 37
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Local Scheduling

Local tasks 
queue

Off-loaded 
tasks queue

Edge 
site

Basic settings
I Multiple machines
I A queue of local tasks
I A queue of off-loaded tasks
I Bi-objective
→ 2nd resource management problem of the platform
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Two-agent Scheduling

Problem formulation
I Identical parallel machines
I Local agent:

I On-line non-preemptive sequential tasks with release dates (rj)
I Processing times known when released (pj)
I Objective: minimise sum flow-time (Fj)

I Global agent:
I Off-line non-preemptive sequential tasks
I Known processing times
I Objective: minimise maximum completion time (Cmax)

time
0 Cj

pj
rj

Fj

Tj
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Strong Competitive Ratio Lower Bound

Worst-case example
I One machine
I One long global task G
I One short local task L
→ Release L right after G has started

time
0 rL CLFL

G L Algo
FL = pG + pL

OPTGL
rL CL

time
0 FL = pL
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Current Research

Task rejection
I Cope with strong lower bounds
I Give more power to the algorithm

Allow rejection of global tasks

→ Trade-off between number of rejections and quality of the solution

Primal-Dual approach
1 Formulate Primal/Dual linear programs
2 Interpret Dual variables
3 Design/analyse algorithm with performance guarantees
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Concluding Words

⇒ Achieving an efficient management of resources in
heterogeneous platforms is not that easy

High Performance Computing
Scheduling on hybrid machines
I Theoretical analysis of scheduling algorithms
I Performance evaluation

Edge Computing
Case-study of Qarnot Computing
I Platform simulation
I Study of different resource management problems in theory and

practice
34 / 37



What’s Next?

I Find good data to validate the temperature prediction method
I Combine temperature prediction with scheduling

I Add more features to Batsim/SimGrid

I Continue the work on the 2-agent scheduling problem
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Computer Science Unplugged
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List of Publications

International journals
I Beaumont et al., “Scheduling on Two Types of Resources: A

Survey” . In ACM Computing Surveys (May 2020).
I Amaris et al., “Generic Algorithms for Scheduling Applications

on Heterogeneous Platforms” . In CCPE (July 2018).

International conferences with procedings
I Bauskar et al., “Investigating Placement Challenges in Edge

Infrastructures through a Common Simulator”. In SBAC-PAD
2020.

I Amaris et al., “Generic Algorithms for Scheduling Applications
on Hybrid Multi-core Machines” . In Europar 2017.

I Mommessin et al., “Automatic Data Filtering in In Situ
Workflows” . In Cluster 2017.
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Scheduling on Hybrid Platforms: State of Art

Setting Off-line On-line

Independent tasks Lower bound - 2
Best known 1 + ε 3.85

Tasks with
precedences

Lower bound 3
√

m
k

Best known 3 + 2
√

2 2
√

m
k

+ 1

1 / 22



HLP

minimise λ subject to:
Ci + pjxj + pj(1− xj) ≤ Cj ∀Tj ∈ T , Ti ∈ Γ−(Tj) (1)

pjxj + pj(1− xj) ≤ Cj ∀Tj ∈ T : Γ−(Tj) = ∅ (2)

Cj ≤ λ ∀Tj ∈ T (3)
1

m

∑

Tj∈T

pjxj ≤ λ (4)

1

k

∑

Tj∈T

pj(1− xj) ≤ λ (5)

xj ∈ {0, 1} ∀Tj ∈ T (6)
Cj ≥ 0 ∀Tj ∈ T (7)
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Ranking Methods

Ranking of HEFT (unrelated resources)

Rank(j) = p̃j + max
i∈Succ(j)

{ ˜Commj,i +Rank(i)}

Ranking of HLP-OLS (CPU/GPU)

Rank(j) = pjxj + pj(1− xj) + max
i∈Succ(j)

{Rank(i)}

3 / 22



qHLP
minimise λ subject to:

Ci +

Q∑

q=1

pj,qxj,q ≤ Cj ∀Tj ∈ T , Ti ∈ Γ−(Tj) (8)

Q∑

q=1

pj,qxj,q ≤ Cj ∀Tj ∈ T : Γ−(Tj) = ∅ (9)

Cj ≤ λ ∀Tj ∈ T (10)
1

mq

∑

Tj∈T
pj,qxj,q ≤ λ 1 ≤ q ≤ Q (11)

Q∑

q=1

xj,q = 1 ∀Tj ∈ T (12)

xj,q ∈ {0, 1} ∀Tj ∈ T , 1 ≤ q ≤ Q (13)
Cj ≥ 0 ∀Tj ∈ T (14)
λ ≥ 0 (15)4 / 22



HEFT Lower Bound
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HLP-EST/HLP-OLS Lower Bound

GPUs
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ER-LS Lower Bound

GPUs
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Performance Evaluation

Benchmark creation (by M. Amaris)
I 18 instances of 5 linear algebra applications for dense matrices

(Chameleon) from real traces
I 15 instances of a fork-join application generated "by hand"

Each instance generated with varying size of task graphs
→ Between 50 and 5,000 tasks per instance

Simulation execution
I 16 machine settings with various numbers of CPUs/GPUs
I Each application instance simulated on each machine setting
⇒ 288 runs for each Chameleon applications, 240 for fork-join, for
each scheduling algorithm

→ Comparison of makespan
LP∗ ≤ makespan

OPT
(achieved approx. ratio)
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Experiments: 2 Resource Types Off-line
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Experiments: 3 Resource Types Off-line

●

●●
●
●
●
●
●

●

●

●

●

●●

●
●
●
●●
●●●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●●

●●

●
●
●
●

●●

●●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●●

●
●

●

●

●

●

●

●
●
●

●●
●

●

●
●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●
●●●

●
●

●
● ●

●

●

●

●●
●●●

●●

●

●

●

●

●

●

●●

●
●
●
●

●

●
●●
●
●

●

●
●
●
●

●

●●

●
●
●●
●
●

●

●

●●●●●●
●
●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●

●

●

●

●

●

●
●
●

●

●

●●

●

●

●

●
●

●●

●
●

●

●

●

●
●
●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●●
●

●

●●●

●

●
●

●

●●
●
●
●
●
●

●●

●

●

●●
●

●

●
●
●

●
●

●

●

●●

●

●

●

●

●●●
●●
●
●
●●

●

●●

●
●
●●●
●

●

●●
●
●●

●
●●●
●
●

●

●
●

●

●●

●

●

●●

●

●
●●
●
●●

●

●
●●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●
●

●

●

●

●●
●

●

●

●●●

●

●

●●●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●
●
●

●

●

●

●●

●●●
●

●

●●

●
●

●

●

●

●

●●

●

●

●●

●

●●●

●
●

●

●

●●●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●●
●●●
●

●

●●
●
●●

●

●●

●

●

●●●

●
●●

●●●
●

●

●●●●
●

●

●●
●●

●

●

●

●

●

●

●

●

●
●●●●
●

●

●

●
●●

●

●●
●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●

●
●

●●●
●

●

●

●●
●●●
●
●
●●

●

●

●●

●

●
●

●

●●

●

●

●
●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●
●●

●

●●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

● ● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●●

●
●
●
●●

●
●

●
●

●●

●

●

●●●

●
●

●

●

●
●
●

●

●●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●●●●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●●●●●●●
●●●●●●●●●●●●●●●
●
●●●●

●

●

●●

●

●●

●

●

●●
●
●●●

●

●

●●●●●●●

●

●

●●
●
●●●●●●●●●●●●●●●●●●●●●

●

●●●●

●

●●●●●●

●

●●●
●●●●

●

●●●
●●●●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●
●●●

●

●

●

●

●

●
●●●●●●●

●●
●●

●
●●
●

●
●●●

●

●

●●●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●
●●●●●

●

●

●
●

●

●

●
●
●
●●●

●

●
●

●

●
●

●

●

●●●

●●●●

●

●●●●●●●●●●●●●●

●

●

●

●

●

●
●

●

●
●
●●●●●●●●●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●●

●●●●●
●●●●
●
●

●

●

●●

●

●

●

●

●●
●

●●●

●

●

●●
●
●●●●

●

●

●●

●
●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●

●

●●●
●●●●

●

●●●
●●●●

●
●
●●
●●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●
●●●

●

●

●

●

●
●

●●
●●●●

●

●

●

●

●
●

●●●●●●

●
●●●●●●

●

●●●●●●●

●

●
●●●●●●

●

●
●●●●●●

●

●

●●

●

●

●

●

●●

●

●
●●●

●

●

●
●

●

●

●●●●●

●

●

●

●

●

●

●●●●●●

●
●●●

●
●●

●
●●●

●●●●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●●●●●

●●●
●●●
●
●

●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●

●

●

●
●

●●
●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●●

●
●●●●

●

●

●

●

●

●●●

●

●

●

●

●
●●

●

●●

●
●●

●

●●

●
●●

●
●●●

●

●●

●

●

●●

●

●

●●

●

●

●●

●● ● ●
●

●

●

QHLP_EST QHLP_OLS QHEFT

get
rf
po

sv
po

trf
po

tri
po

trs

for
kJo

in
get

rf
po

sv
po

trf
po

tri
po

trs

for
kJo

in
get

rf
po

sv
po

trf
po

tri
po

trs

for
kJo

in

1.0

1.5

2.0

2.5

Application

LP*
Makespan
over 

10 / 22



Experiments: 2 Resource Types On-line
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Simulation Tools

I SimGrid: https://github.com/simgrid/simgrid
I Batsim: https://github.com/oar-team/batsim

I SimGrid Temperature for Qarnot: https://github.com/
Mommessc/simgrid/tree/temperature-sbac-2020

I Batsim for Qarnot: https://gitlab.inria.fr/batsim/
batsim/tree/temperature-sbac-2020

I PyBatsim for Qarnot: https://gitlab.inria.fr/batsim/
pybatsim/tree/temperature-sbac-2020
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Simulated qarnot Platform
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Thermodynamic Formulae

Thermal energy/heat capacity:

Q = C ×∆T

Conductive heat transfer:

Q

dt
=

∆T

R

Energy quantity Q [J ], thermal capacity C = mc [J.K−1], thermal
resistance R [K.W−1], temperature difference ∆T [K], time period
dt [s].
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Temperature Transfers
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Thermal Models
Naive Iterative Approach:

Trad(t+ 1) = Trad(t) +
Egained_rad − Elost_rad

Crad

Tair(t+ 1) = Tair(t) +
Elost_rad − Elost_air

Cair

Closed-form:
(
Trad(n)
Tair(n)

)
= An ·

(
Trad(0)
Tair(0)

)
+ Sn ·

( Prad

Crad
Tout

RairCair

)

Lumped Thermal Model:

Trad(t) = Trad(0) · e−αt + (Tair + Prad ·Rrad) · (1− e−αt)

where α = 1
RC

[s−1] for the rad.
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Temperature Requirements VS Power

0 24

Temperature 
required

Time of 
the dayΔT=0 ΔT=0ΔT=-4 ΔT=+4 ΔT=0
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Temperature Experiments
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Primal Program

min
∑

j∈L

∫ ∞

rj

(
(t− rj)
pj

+
1

2

)
xj(t)dt subject to:

∫ ∞

rj

xj(t)dt ≥ pj ∀j ∈ L ∪ G
∑

∀j∈L∪G
xj(t) ≤ |M | ∀t

∫ ∞

0

(
t

pj
+

1

2

)
xj(t)dt ≤ CGmax ∀j ∈ G

xj(t) + xj(t
′) ≤ 1 ∀j ∈ G ∪ L,∀t,∀t′ ≥ t+ pj

xj(t) ∈ {0; 1} ∀t,∀j ∈ L ∪ G
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Dual Program

maximize
∑

j

pjαj −
∫

t
Mβtdt−

∑

j∈G
CGmax −

∑

j∈LG

∫ ∞

0

∫ ∞

t′=t+pj
δj,t,t′ dt

′dt

subject to:

αj − βt −
∫ ∞

0
δj,t,t′dt

′ +

∫ ∞

0
δj,t−pj−t′,t′dt

′ ≤ t−rj
pj

+ 1
2 ∀j ∈ L, ∀t

αj − βt −
∫ ∞

0
δj,t,t′dt

′ +

∫ ∞

0
δj,t−pj−t′,t′dt

′ ≤ 0 ∀j ∈ G, ∀t

αj ≥ 0 ∀j
βt ≥ 0 ∀t

δj,t,t′ ≥ 0 ∀j,∀t,∀t′
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