Scheduling Parallel Programs on Hybrid Machines

Mommessin Clément
 Univ. Grenoble Alpes

Research project performed at INRIA-Grenoble
Under the supervision of:
Prof. D. Trystram, Grenoble INP
Dr. G. Lucarelli, Grenoble INP
June, 24th, 2016

High Performance Computing

■ Evolution of parallel platforms

- Increasing number of nodes

■ Heterogeneity within the nodes (CPU, accelerator (GPU), I/O, analytics, ...)
\Rightarrow Hard to efficiently manage this increasing number of resource types.

High Performance Computing

■ Evolution of parallel platforms

- Increasing number of nodes

■ Heterogeneity within the nodes (CPU, accelerator (GPU), I/O, analytics, ...)
\Rightarrow Hard to efficiently manage this increasing number of resource types.

Ad-hoc algorithms vs. Generic algorithms

Problem Definition

- m identical CPUs
- k identical GPUs
- n dependent tasks T_{j}
- $\overline{p_{j}}$: processing time on CPU
- p_{j} : processing time on GPU
- DAG $G=(V, E)$:
precedence constraints

Problem Definition (cont.)

Goal

Minimize the makespan, completion time of the last task, for scheduling a set of dependent tasks to be executed on several identical CPUs and GPUs.
Specifically, scheduling a task is answering two questions:
■ Where? - On which resource and which processor the task is executed
■ When? - The date of execution of the task

Example with List Scheduling

Task	Processing time on CPU / GPU
T_{1}	$2 / 1$
T_{2}	$10 / 1$
T_{3}	$1 / 1$

CPU
GPU

Example with List Scheduling

Task	Processing time on CPU / GPU
T_{1}	$2 / 1$
T_{2}	$10 / 1$
T_{3}	$1 / 1$

CPU

GPU	T_{1}
	1

Example with List Scheduling

Task	Processing time on CPU / GPU
T_{1}	$2 / 1$
T_{2}	$10 / 1$
T_{3}	$1 / 1$

Example with List Scheduling

Task	Processing time on CPU / GPU
T_{1}	$2 / 1$
T_{2}	$10 / 1$
T_{3}	$1 / 1$

Example with List Scheduling

Task	Processing time on CPU / GPU
T_{1}	$2 / 1$
T_{2}	$10 / 1$
T_{3}	$1 / 1$

Classical List Scheduling

State of art

- Heuristics
- Offline with dependent tasks and communications [Topcuoglu et al., 1999]
■ Approximation algorithms
- Offline with independent tasks [Bleuse et al., 2014]
- Online with independent tasks [Chen et al., 2014]
- Offline with dependent tasks [Kedad-Sidhoum et al., 2015]

■ Heterogeneous Earliest Finish Time (HEFT)
■ Heterogeneous Linear Program (HLP)

- New Algorithm (refined HLP)
- Experiments
- Conclusions and perspectives

HEFT [Topcuoglu et al., 1999]

- Works in two steps:

1 Task prioritization
2 Task scheduling

- But no constant performance guarantee on the makespan
- Counter-example with approximation ratio close to $\frac{m}{2}$ [Bleuse et al., 2015]
- Improved counter-example with approximation ratio close to ($1-\frac{1}{e}$)m [This work]

HEFT [Topcuoglu et al., 1999] (cont.)

Task prioritization: For the model of hybrid machines, the rank of each task T_{j} is recursively computed as follows:

$$
\operatorname{rank}\left(T_{j}\right)=\frac{m \overline{p_{j}}+k \underline{p_{j}}}{m+k}+\max _{i \in \Gamma^{+}(j)}\left\{\operatorname{rank}\left(T_{i}\right)\right\}
$$

Task scheduling: Schedules the task with the highest rank on the processor which minimizes the completion time of that task.

HLP [Kedad-Sidhoum et al., 2015]

- Works in two steps:

1 Assignment step: A linear program and a rounding method are used to assign each task to a resource type
2 Scheduling step: A variant of List Scheduling schedules each task according to the assignment of the first step

■ The approximation ratio is 6 [Kedad-Sidhoum et al., 2015]

- The bound on the approximation ratio is tight [This work]

Assignment step

Variables used:
x_{j} : Binary assignment variable of T_{j} defined as:

$$
x_{j}= \begin{cases}1 & \text { if } T_{j} \text { is processed on a CPU } \\ 0 & \text { otherwise }\end{cases}
$$

C_{j} : Expected completion time of T_{j}
λ : Lower bound of the makespan

Assignment step (cont.)

$(I L P 1)=$ minimize λ subject to:

$$
\begin{array}{lr}
C_{i}+\overline{p_{j}} x_{j}+\underline{p_{j}}\left(1-x_{j}\right) \leq C_{j} & \forall j \in V, \forall i \in \Gamma^{-}(j) \\
C_{j} \leq \lambda & \forall j \in V \\
\sum_{j=1}^{n} \overline{p_{j}} x_{j} \leq m \lambda & \\
\sum_{j=1}^{n} \underline{p_{j}}\left(1-x_{j}\right) \leq k \lambda & \\
x_{j} \in\{0,1\} & \forall j \in V
\end{array}
$$

Assignment step (cont.)

$(L P 1)=$ minimize λ subject to:

$$
\begin{array}{lr}
C_{i}+\overline{p_{j}} x_{j}+\underline{p_{j}}\left(1-x_{j}\right) \leq C_{j} & \forall j \in V, \forall i \in \Gamma^{-}(j) \\
C_{j} \leq \lambda & \forall j \in V \\
\sum_{j=1}^{n} \overline{p_{j}} x_{j} \leq m \lambda & \\
\sum_{j=1}^{n} \underline{p_{j}}\left(1-x_{j}\right) \leq k \lambda & \\
x_{j} \in[0,1] & \forall j \in V
\end{array}
$$

Rounding Policy

Rounding of each variable x_{j} :

$$
x_{j}= \begin{cases}1 & \text { if } x_{j}^{R} \geq \frac{1}{2} \\ 0 & \text { otherwise }\end{cases}
$$

The goal of the rounding is to evenly balance the load between the CPUs and the GPUs.

Scheduling step

Algorithm 1

1: $S \leftarrow \emptyset$
2: while $S \neq T$ do
3: $\quad R \leftarrow\left\{T_{j} \mid \Gamma^{-}(j) \subseteq S\right\}$: the set of ready tasks
4: $\quad T_{j} \in R$: the task with the smallest possible starting time, with respect to the precedence constraints and the assignment variables
5: \quad Schedule T_{j} on the processor which gives the smallest possible starting time
6: $\quad S \leftarrow S \cup\left\{T_{j}\right\}$

Worst-case Example

Worst-case Example

New Scheduling Method

A recursive ranking method of each task is defined:

$$
\operatorname{Rank}\left(T_{j}\right)=\overline{p_{j}} x_{j}+\underline{p_{j}}\left(1-x_{j}\right)+\max _{i \in \Gamma^{+}(j)}\left\{\operatorname{Rank}\left(T_{i}\right)\right\}
$$

The list of tasks is sorted in decreasing order of the ranks to give priority to the critical tasks.

New Linear Program

$(I L P 2)=$ minimize λ subject to:

$$
\begin{aligned}
& C_{i}+\overline{p_{j}} x_{j}+\underline{p_{j}}\left(1-x_{j}\right) \leq C_{j} \\
& C_{j} \leq \lambda
\end{aligned}
$$

$$
\forall j \in V, \forall i \in \Gamma^{-}(j)
$$

$$
\forall j \in V
$$

$$
\sum_{i \in A(j)} \frac{\overline{p_{i}} x_{i}}{m}+\overline{p_{j}} x_{j}+\underline{p_{j}}\left(1-x_{j}\right) \leq C_{j}
$$

$$
\forall j \in V
$$

$$
\sum_{i \in A(j)} \frac{p_{i}\left(1-x_{i}\right)}{k}+\overline{p_{j}} x_{j}+\underline{p_{j}}\left(1-x_{j}\right) \leq C_{j}
$$

$$
x_{j} \in\{0,1\}
$$

New Algorithm

The refined algorithm is defined with:

- (LP2)
- Original rounding method
- List Scheduling with ranking of tasks

Proposition
The new algorithm has an approximation ratio of 6 and the bound is tight.

Worst-case Example

Experiments

Benchmark constructed from Chameleon:
■ 6 applications of linear algebra for dense matrix

- 4 tilings of the matrices in sub-matrices
- 6 size of sub-matrices
\Rightarrow total of 24 configurations of each application.
Different couples (nb_cpu, nb_gpu) to simulate the hybrid machines.

Different algorithms tested:
■ HLP, refined HLP and HLP_ranked
■ HEFT as a reference

- Greedy algorithm without LP

Analysis of HLP

Analysis of HLP (cont.)

Total number of tasks for nb bloc=50

- 2551
- 22101
- 24651
- 42926
- 66301

Comparison of the Algorithms

Comparison with HEFT

Algorithm without LP

- Decision rule for the assignment:

$$
x_{j}= \begin{cases}1 & \text { if } \frac{\overline{p_{j}}}{\sqrt{m}} \leq \frac{p_{j}}{\sqrt{k}} \\ 0 & \text { otherwise }\end{cases}
$$

- List Scheduling with ranking of tasks

LP versus Greedy

Conclusions and Contributions

■ Worst-case example for HLP

- Bound of approximation ratio tight at 6

■ Design and analysis of the refined HLP algorithm

- Approximation ratio of 6
- Tight bound
- Generalization of HLP for more heterogeneous platforms
- Tight $Q(Q+1)$ approximation analysis

■ Improved lower bound for HEFT

- Approximation ratio at least $\left(1-\frac{1}{e}\right) m$

■ Construction of a benchmark

- 6 applications of dense matrix linear algebra
- Performance comparison of the algorithms

Future Work

- Improve the assignment step
- More dynamic decision rules
- Both for hybrid and heterogeneous platforms
- Consider the increasing complexity of the platforms
- Different accelerators, I/O or visualization units

- New constraints due to this heterogeneity
\Rightarrow The design of an integrated scheduler for next-generation computing platforms

Thank you for your attention

Any question?

Void

$\left(L P_{Q}\right)=$ minimize $\lambda=C_{\text {end }}$ subject to:

$$
C_{i}+\sum_{q=1}^{Q} p_{j, q} x_{j, q} \leq C_{j} \quad \forall j \in V, \forall i \in \Gamma^{-}(j)
$$

$$
\sum_{i \in A(j)} \frac{p_{j, q} x_{j, q}}{M_{q}}+\sum_{q=1}^{Q} p_{j, q} x_{j, q} \leq C_{j} \quad \forall j \in V, \forall q=1, \cdots, Q
$$

$$
\sum_{q=1}^{Q} x_{j, q}=1
$$

$$
\forall j \in V
$$

$$
x_{j, q} \in\{0,1\}
$$

$$
\forall j \in V, \forall q=1, \cdots, Q
$$

$1 r_{j}=\underset{q=1, \cdots, Q}{\arg \max }\left\{x_{j, q}^{R}\right\} \quad \forall j \in V$
$2 x_{j, q}=\left\{\begin{array}{ll}1 & \text { if } q=r_{j} \\ 0 & \text { otherwise }\end{array} \quad \forall j \in V, \forall q=1, \cdots, Q\right.$

